IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920315324.html
   My bibliography  Save this article

High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm

Author

Listed:
  • Yang, Xiaolei
  • Milliren, Christopher
  • Kistner, Matt
  • Hogg, Christopher
  • Marr, Jeff
  • Shen, Lian
  • Sotiropoulos, Fotis

Abstract

Characterizing wind farm flow fields at high temporal and spatial resolutions is critical prerequisite for the optimal design and operation of utility-scale wind farms and for reducing the levelized cost of energy. However, due to the large disparity of underlying scales, measurements or simulations alone cannot provide high resolution wind fields, which are informed by and account for the effect of both large scale (i.e. hour, day, month and year) and small scale (i.e. second and minute) site-specific variations in the atmosphere. We explore the feasibility of integrating field measurements and high-fidelity large-eddy simulation (LES) to characterize the wind field in a utility-scale wind farm while accounting for flow phenomena across multiple temporal scales. Specifically, we employ field measurements to characterize the monthly wind speed and wind direction distributions and investigate the wind characteristics in turbine wakes. It was found that the probability density function (PDF) of the wind speed in turbine wakes can be reasonably represented using the Weibull distribution but with shape factors smaller than those not in the wake. LES of the wind farm under statistically steady inflow is subsequently carried out for one wind direction. The LES predictions are compared with the measured data conditionally averaged based on the wind speed, wind direction and the root-mean-square of wind speed fluctuations over time intervals of 30 min. Good agreement is obtained for both mean wind speed and turbulence intensity. The present work shows the possibility of integrating field measurements and high-fidelity simulations for improved characterization of the site-specific wind fields in utility-scale wind farms.

Suggested Citation

  • Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920315324
    DOI: 10.1016/j.apenergy.2020.116115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirchner-Bossi, N. & Prieto, L. & García-Herrera, R. & Carro-Calvo, L. & Salcedo-Sanz, S., 2013. "Multi-decadal variability in a centennial reconstruction of daily wind," Applied Energy, Elsevier, vol. 105(C), pages 30-46.
    2. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    3. Nicolas Gasset & Mathieu Landry & Yves Gagnon, 2012. "A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications," Energies, MDPI, vol. 5(11), pages 1-35, October.
    4. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    5. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    6. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    7. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
    8. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    9. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    10. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
    11. Oliver Probst & Diego Cárdenas, 2010. "State of the Art and Trends in Wind Resource Assessment," Energies, MDPI, vol. 3(6), pages 1-55, June.
    12. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    13. Wu, Yu-Ting & Liao, Teh-Lu & Chen, Chang-Kuo & Lin, Chuan-Yao & Chen, Po-Wei, 2019. "Power output efficiency in large wind farms with different hub heights and configurations," Renewable Energy, Elsevier, vol. 132(C), pages 941-949.
    14. Acker, Thomas L. & Williams, Susan K. & Duque, Earl P.N. & Brummels, Grant & Buechler, Jason, 2007. "Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost," Renewable Energy, Elsevier, vol. 32(9), pages 1453-1466.
    15. Vanvyve, Emilie & Delle Monache, Luca & Monaghan, Andrew J. & Pinto, James O., 2015. "Wind resource estimates with an analog ensemble approach," Renewable Energy, Elsevier, vol. 74(C), pages 761-773.
    16. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    17. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    18. Weekes, S.M. & Tomlin, A.S., 2014. "Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy," Renewable Energy, Elsevier, vol. 63(C), pages 162-171.
    19. Tang, Xiao-Yu & Zhao, Shumian & Fan, Bo & Peinke, Joachim & Stoevesandt, Bernhard, 2019. "Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts," Applied Energy, Elsevier, vol. 238(C), pages 806-815.
    20. Zhaobin Li & Xiaolei Yang, 2020. "Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes," Energies, MDPI, vol. 13(14), pages 1-18, July.
    21. Simões, Teresa & Estanqueiro, Ana, 2016. "A new methodology for urban wind resource assessment," Renewable Energy, Elsevier, vol. 89(C), pages 598-605.
    22. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    23. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    2. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    3. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    4. Xiaohao Liu & Zhaobin Li & Xiaolei Yang & Duo Xu & Seokkoo Kang & Ali Khosronejad, 2022. "Large-Eddy Simulation of Wakes of Waked Wind Turbines," Energies, MDPI, vol. 15(8), pages 1-26, April.
    5. Wang, H. & Ke, S.T. & Wang, T.G. & Kareem, A. & Hu, L. & Ge, Y.J., 2022. "Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model," Renewable Energy, Elsevier, vol. 188(C), pages 765-777.
    6. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
    7. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    8. Neil Garcia & Biswaranjan Mohanty & Kim A. Stelson, 2023. "Variability in the Wind Spectrum between 10 −2 Hz and 1 Hz," Energies, MDPI, vol. 16(9), pages 1-14, April.
    9. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    2. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    3. Nedaei, Mojtaba & Assareh, Ehsanolah & Walsh, Philip R., 2018. "A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods," Renewable Energy, Elsevier, vol. 128(PA), pages 362-374.
    4. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    5. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    6. Lattawan Niyomtham & Charoenporn Lertsathittanakorn & Jompob Waewsak & Yves Gagnon, 2022. "Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand," Energies, MDPI, vol. 15(9), pages 1-19, April.
    7. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    8. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    9. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    10. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    11. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    12. Cheng, Xu & Yan, Bowen & Zhou, Xuhong & Yang, Qingshan & Huang, Guoqing & Su, Yanwen & Yang, Wei & Jiang, Yan, 2024. "Wind resource assessment at mountainous wind farm: Fusion of RANS and vertical multi-point on-site measured wind field data," Applied Energy, Elsevier, vol. 363(C).
    13. Sarah Jamal Mattar & Mohammad Reza Kavian Nezhad & Michael Versteege & Carlos F. Lange & Brian A. Fleck, 2021. "Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign," Energies, MDPI, vol. 14(9), pages 1-19, April.
    14. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    15. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    16. Mizuki Konagaya & Teruo Ohsawa & Toshinari Mito & Takeshi Misaki & Taro Maruo & Yasuyuki Baba, 2022. "Estimation of Nearshore Wind Conditions Using Onshore Observation Data with Computational Fluid Dynamic and Mesoscale Models," Resources, MDPI, vol. 11(11), pages 1-18, October.
    17. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    18. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    19. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    20. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920315324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.