IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6533-d908954.html
   My bibliography  Save this article

Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes

Author

Listed:
  • Zhaobin Li

    (The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaohao Liu

    (The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaolei Yang

    (The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements.

Suggested Citation

  • Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6533-:d:908954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. Yang, Di & Meneveau, Charles & Shen, Lian, 2014. "Effect of downwind swells on offshore wind energy harvesting – A large-eddy simulation study," Renewable Energy, Elsevier, vol. 70(C), pages 11-23.
    4. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    5. Kim, Taewoo & Oh, Sejong & Yee, Kwanjung, 2015. "Improved actuator surface method for wind turbine application," Renewable Energy, Elsevier, vol. 76(C), pages 16-26.
    6. Dong, Guodan & Li, Zhaobin & Qin, Jianhua & Yang, Xiaolei, 2022. "Predictive capability of actuator disk models for wakes of different wind turbine designs," Renewable Energy, Elsevier, vol. 188(C), pages 269-281.
    7. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
    8. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    9. Zhaobin Li & Xiaolei Yang, 2020. "Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes," Energies, MDPI, vol. 13(14), pages 1-18, July.
    10. Sørensen, Jens Nørkær & Nilsson, Karl & Ivanell, Stefan & Asmuth, Henrik & Mikkelsen, Robert Flemming, 2020. "Analytical body forces in numerical actuator disc model of wind turbines," Renewable Energy, Elsevier, vol. 147(P1), pages 2259-2271.
    11. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    12. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    13. Xiaolei Yang & Fotis Sotiropoulos, 2019. "A Review on the Meandering of Wind Turbine Wakes," Energies, MDPI, vol. 12(24), pages 1-20, December.
    14. J. G. Schepers & S. J. Schreck, 2019. "Aerodynamic measurements on wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    15. Charlotte Bay Hasager & Leif Rasmussen & Alfredo Peña & Leo E. Jensen & Pierre-Elouan Réthoré, 2013. "Wind Farm Wake: The Horns Rev Photo Case," Energies, MDPI, vol. 6(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
    2. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
    4. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    5. Yang, Xuefeng & Yu, Peining & Sui, Yi & Chen, Shengli & Xing, Jiuxing & Li, Lei, 2024. "A numerical study of rainfall effects on wind turbine wakes," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    2. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    3. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    4. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    5. Jagdeep Singh & Jahrul M Alam, 2023. "Large-Eddy Simulation of Utility-Scale Wind Farm Sited over Complex Terrain," Energies, MDPI, vol. 16(16), pages 1-26, August.
    6. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
    7. Feng, Dachuan & Li, Larry K.B. & Gupta, Vikrant & Wan, Minping, 2022. "Componentwise influence of upstream turbulence on the far-wake dynamics of wind turbines," Renewable Energy, Elsevier, vol. 200(C), pages 1081-1091.
    8. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    9. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    10. Pin Lyu & Wen-Li Chen & Hui Li & Lian Shen, 2019. "A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver," Energies, MDPI, vol. 12(4), pages 1-24, February.
    11. Wang, Qiang & Luo, Kun & Yuan, Renyu & Wang, Shuai & Fan, Jianren & Cen, Kefa, 2020. "A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain," Energy, Elsevier, vol. 203(C).
    12. Dong, Guodan & Li, Zhaobin & Qin, Jianhua & Yang, Xiaolei, 2022. "Predictive capability of actuator disk models for wakes of different wind turbine designs," Renewable Energy, Elsevier, vol. 188(C), pages 269-281.
    13. Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
    14. Xiaohao Liu & Zhaobin Li & Xiaolei Yang & Duo Xu & Seokkoo Kang & Ali Khosronejad, 2022. "Large-Eddy Simulation of Wakes of Waked Wind Turbines," Energies, MDPI, vol. 15(8), pages 1-26, April.
    15. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    16. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
    17. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    18. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    19. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    20. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6533-:d:908954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.