IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i9p3192-3198.html
   My bibliography  Save this article

Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment

Author

Listed:
  • Al-Yahyai, Sultan
  • Charabi, Yassine
  • Gastli, Adel

Abstract

Wind energy resource assessment applications require accurate wind measurements. Most of the published studies used data from existing weather station network operated by meteorological departments. Due to relatively high cost of weather stations the resolution of the weather station network is coarse for wind energy applications. Typically, meteorological departments install weather stations at specific locations such as airports, ports and areas with high density population. Typically, these locations are avoided during wind farms siting. According to WMO regulations, weather stations provide measurements for different weather elements at specific altitudes such as 2Â m for air temperature and 10Â m for wind measurements. For wind energy resource assessment applications, minimum of one year of wind measurements is required to build wind climatology for a certain site. Therefore data collected from a certain site cannot be used before one year of operation. Due to these limitations, wind energy resource assessment application needs to use data from different sources. Recently, wind assessment studies were conducted using data generated by Numerical Weather Prediction models. This paper reviews the use of the Numerical Weather Prediction data for wind energy resource assessment. It gives a general overview of NWP models and how they overcome the limitations in the classical wind measurements.

Suggested Citation

  • Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:3192-3198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00181-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    2. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    3. Radics, Kornélia & Bartholy, Judit, 2008. "Estimating and modelling the wind resource of Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 874-882, April.
    4. Dorvlo, A.S.S & Ampratwum, D.B, 2002. "Wind energy potential for Oman," Renewable Energy, Elsevier, vol. 26(3), pages 333-338.
    5. AfDB AfDB, . "AfDB Group Annual Report 2008," Annual Report, African Development Bank, number 64 edited by Koua Louis Kouakou.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doukas, Haris & Patlitzianas, Konstantinos D. & Kagiannas, Argyris G. & Psarras, John, 2006. "Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?," Renewable Energy, Elsevier, vol. 31(6), pages 755-770.
    2. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    3. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    4. Poulet, P. & Outbib, R., 2015. "Energy production for dwellings by using hybrid systems based on heat pump variable input power," Applied Energy, Elsevier, vol. 147(C), pages 413-429.
    5. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    6. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    7. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    8. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    9. Giannaros, Theodore M. & Melas, Dimitrios & Ziomas, Ioannis, 2017. "Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece," Renewable Energy, Elsevier, vol. 102(PA), pages 190-198.
    10. Dai, Danielle & Weinzimmer, David, 2014. "Riding First Class: Impacts of Silicon Valley Shuttles on Commute & Residential Location Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2jr7z01q, Institute of Transportation Studies, UC Berkeley.
    11. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    12. repec:hal:wpspec:info:hdl:2441/eo6779thqgm5r489maqa474kg is not listed on IDEAS
    13. Paroussos, Leonidas & Fragkiadakis, Kostas & Charalampidis, Ioannis & Tsani, Stella & Capros, Pantelis, 2013. "Quantitative Reference Scenario for the MEDPRO Project," CEPS Papers 8097, Centre for European Policy Studies.
    14. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    15. Wadim Strielkowski & tep n Kr ka & Evgeny Lisin, 2013. "Energy Economics and Policy of Renewable Energy Sources in the European Union," International Journal of Energy Economics and Policy, Econjournals, vol. 3(4), pages 333-340.
    16. Muhongayire, Wivine, 2012. "An Economic Assessment of the Factors Influencing Smallholder Farmers' Access to Formal Credit: A Case Study of Rwamagana District, Rwanda," Research Theses 198522, Collaborative Masters Program in Agricultural and Applied Economics.
    17. Axel Dreher & Matthew Gould & Matthew Rablen & James Vreeland, 2014. "The determinants of election to the United Nations Security Council," Public Choice, Springer, vol. 158(1), pages 51-83, January.
    18. Adaramola, M.S. & Oyewola, O.M., 2011. "Evaluating the performance of wind turbines in selected locations in Oyo state, Nigeria," Renewable Energy, Elsevier, vol. 36(12), pages 3297-3304.
    19. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    20. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    21. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:3192-3198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.