IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3025-d798392.html
   My bibliography  Save this article

Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand

Author

Listed:
  • Lattawan Niyomtham

    (Sustainable Development Program, International College, Thaksin University, Songkhla 90110, Thailand)

  • Charoenporn Lertsathittanakorn

    (School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Jompob Waewsak

    (Research Center in Energy and Environment, Thaksin University (Phatthalung Campus), Phatthalung 93110, Thailand)

  • Yves Gagnon

    (Department of Sciences, Université de Moncton, Edmundston Campus, Edmundston, NB E3V 2S8, Canada)

Abstract

Situated in the southern part and on the western coast of Thailand, the Andaman Coast covers the provinces of Ranong, Phangnga, Phuket, Krabi, Trang and Satun. Using a coupled mesoscale atmospheric model and a microscale wind flow model, along with computational fluid dynamics (CFD) modeling, this paper presents a detailed assessment of the wind energy potential for power generation along the Andaman Coast of Thailand. The climatic data are obtained from the Modern Era Retrospective analysis for Research and Applications (MERRA), along with a high-resolution topography database and Land Use Land Cover digital data. The results are compared to the equivalent wind speeds obtained with the Weather Research and Forecasting (WRF) atmospheric model. The results showed that, at 120 m above ground level (agl), the predicted wind speeds from the models proposed were 20% lower for the mesoscale model and 10% lower for the microscale model when compared to the equivalent wind speeds obtained from the WRF model. A CFD wind flow model was then used to investigate 3D wind fields at 120–125 m agl over five potential sites offering promising wind resources. The annual energy productions (AEP) and the capacity factors under three different wake loss models and for five wind turbine generator technologies were optimized for 10-MW wind power plants, as per Thailand’s energy policies. With capacity factors ranging from 20 to 40%, it was found that the AEPs of the best sites were in the range of 18–36 GWh/year, with a total AEP in the vicinity of 135 GWh/year when using a single wind turbine model for the five sites studied. The combined energy productions by these wind power plants, once operational, could avoid GHG emissions of more than 80 ktons of CO 2eq /year.

Suggested Citation

  • Lattawan Niyomtham & Charoenporn Lertsathittanakorn & Jompob Waewsak & Yves Gagnon, 2022. "Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3025-:d:798392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    2. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    3. Nicolas Gasset & Mathieu Landry & Yves Gagnon, 2012. "A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications," Energies, MDPI, vol. 5(11), pages 1-35, October.
    4. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    5. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    6. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    7. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Jompob Waewsak & Chana Chancham & Somphol Chiwamongkhonkarn & Yves Gagnon, 2019. "Wind Resource Assessment of the Southernmost Region of Thailand Using Atmospheric and Computational Fluid Dynamics Wind Flow Modeling," Energies, MDPI, vol. 12(10), pages 1-18, May.
    9. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    10. Bilal, Muhammad & Birkelund, Yngve & Homola, Matthew & Virk, Muhammad Shakeel, 2016. "Wind over complex terrain – Microscale modelling with two types of mesoscale winds at Nygårdsfjell," Renewable Energy, Elsevier, vol. 99(C), pages 647-653.
    11. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    12. Daniel Tabas & Jiannong Fang & Fernando Porté-Agel, 2019. "Wind Energy Prediction in Highly Complex Terrain by Computational Fluid Dynamics," Energies, MDPI, vol. 12(7), pages 1-12, April.
    13. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    14. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2013. "High resolution wind atlas for Nakhon Si Thammarat and Songkhla provinces, Thailand," Renewable Energy, Elsevier, vol. 53(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mizuki Konagaya & Teruo Ohsawa & Toshinari Mito & Takeshi Misaki & Taro Maruo & Yasuyuki Baba, 2022. "Estimation of Nearshore Wind Conditions Using Onshore Observation Data with Computational Fluid Dynamic and Mesoscale Models," Resources, MDPI, vol. 11(11), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    3. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    4. Jompob Waewsak & Chana Chancham & Somphol Chiwamongkhonkarn & Yves Gagnon, 2019. "Wind Resource Assessment of the Southernmost Region of Thailand Using Atmospheric and Computational Fluid Dynamics Wind Flow Modeling," Energies, MDPI, vol. 12(10), pages 1-18, May.
    5. Jung, Christopher & Schindler, Dirk, 2023. "Introducing a new wind speed complementarity model," Energy, Elsevier, vol. 265(C).
    6. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    7. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    9. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    10. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
    11. Mizuki Konagaya & Teruo Ohsawa & Toshinari Mito & Takeshi Misaki & Taro Maruo & Yasuyuki Baba, 2022. "Estimation of Nearshore Wind Conditions Using Onshore Observation Data with Computational Fluid Dynamic and Mesoscale Models," Resources, MDPI, vol. 11(11), pages 1-18, October.
    12. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    13. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    15. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    16. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    17. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Kotroni, V. & Lagouvardos, K. & Lykoudis, S., 2014. "High-resolution model-based wind atlas for Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 479-489.
    19. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3025-:d:798392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.