IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp113-125.html
   My bibliography  Save this article

Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm

Author

Listed:
  • Yuan, Renyu
  • Ji, Wenju
  • Luo, Kun
  • Wang, Jianwen
  • Zhang, Sanxia
  • Wang, Qiang
  • Fan, Jianren
  • Ni, MingJiang
  • Cen, Kefa

Abstract

The mesoscale Weather Research and Forecasting (WRF) model coupled with wind farm parameterization is newly developed to simulate the wake flow and power production of a real onshore wind farm. First, wind farm flow field simulations are conducted with 1000m, 500m and 200m horizontal resolutions, and the simulation results capture the wind farm observed data well. In addition, wind farm flow characteristics, power output, and influence on the atmosphere boundary layer (ABL) are resolved at a horizontal resolution of 200m. The wake interactions, wind speed, and power output deficit in the wind farm are analyzed. The power comparison results prove that the proposed method can be applied to simulate the power output of a real onshore wind farm with high accuracy in real time. The influence of the wind farm on the ABL is also discussed. The results show that wind farm effects on the ABL occur mainly within the turbine rotor-spanned heights and the downstream regions behind the wind farm within 10km, within which the speed deficit ratio can exceed 10%. For the region that is 18km downstream of the wind farm, the average speed deficit ratio is only about 2%. This study is the first attempt to reproduce the wake flow and power output of a real onshore wind farm by the WRF model at such high resolution.

Suggested Citation

  • Yuan, Renyu & Ji, Wenju & Luo, Kun & Wang, Jianwen & Zhang, Sanxia & Wang, Qiang & Fan, Jianren & Ni, MingJiang & Cen, Kefa, 2017. "Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm," Applied Energy, Elsevier, vol. 206(C), pages 113-125.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:113-125
    DOI: 10.1016/j.apenergy.2017.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    2. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    3. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    4. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    5. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    6. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    7. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    8. Ulazia, Alain & Saenz, Jon & Ibarra-Berastegui, Gabriel, 2016. "Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline," Applied Energy, Elsevier, vol. 180(C), pages 617-627.
    9. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    2. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    3. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    4. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    5. Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
    6. Wang, Qiang & Luo, Kun & Yuan, Renyu & Wang, Shuai & Fan, Jianren & Cen, Kefa, 2020. "A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain," Energy, Elsevier, vol. 203(C).
    7. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
    8. Fu, Xiaopeng & Wang, Chengshan & Li, Peng & Wang, Liwei, 2019. "Exponential integration algorithm for large-scale wind farm simulation with Krylov subspace acceleration," Applied Energy, Elsevier, vol. 254(C).
    9. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    10. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    11. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    12. Dong Xu & Feifei Xue & Yuqi Wu & Yangzhou Li & Wei Liu & Chang Xu & Jing Sun, 2024. "Analysis of Wind Resource Characteristics in the Ulanqab Wind Power Base (Wind Farm): Mesoscale Modeling Approach," Energies, MDPI, vol. 17(14), pages 1-18, July.
    13. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegui, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2017. "Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean," Applied Energy, Elsevier, vol. 208(C), pages 1232-1245.
    2. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    3. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    4. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    5. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    6. Ulazia, Alain & Saenz, Jon & Ibarra-Berastegui, Gabriel, 2016. "Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline," Applied Energy, Elsevier, vol. 180(C), pages 617-627.
    7. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    8. Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia & Santos J. González-Rojí, 2019. "Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    9. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    10. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    11. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    12. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    13. Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
    14. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    15. Erdong Zhao & Jing Zhao & Liwei Liu & Zhongyue Su & Ning An, 2015. "Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation," Energies, MDPI, vol. 9(1), pages 1-20, December.
    16. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    17. Giannaros, Theodore M. & Melas, Dimitrios & Ziomas, Ioannis, 2017. "Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece," Renewable Energy, Elsevier, vol. 102(PA), pages 190-198.
    18. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    19. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    20. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:113-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.