Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.116054
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ping, Ping & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Chen, Chunhua, 2014. "Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method," Applied Energy, Elsevier, vol. 129(C), pages 261-273.
- Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
- Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
- J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
- Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
- Huang, Peifeng & Ping, Ping & Li, Ke & Chen, Haodong & Wang, Qingsong & Wen, Jennifer & Sun, Jinhua, 2016. "Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode," Applied Energy, Elsevier, vol. 183(C), pages 659-673.
- Ye, Jiana & Chen, Haodong & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Lo, Siuming, 2016. "Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions," Applied Energy, Elsevier, vol. 182(C), pages 464-474.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
- Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
- Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
- Hao Chen & Kai Yang & Youwei Liu & Mingjie Zhang & Hao Liu & Jialiang Liu & Zhanzhan Qu & Yilin Lai, 2023. "Experimental Investigation of Thermal Runaway Behavior and Hazards of a 1440 Ah LiFePO 4 Battery Pack," Energies, MDPI, vol. 16(8), pages 1-14, April.
- E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
- Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
- Zhou, Zhizuan & Zhou, Xiaodong & Li, Maoyu & Cao, Bei & Liew, K.M. & Yang, Lizhong, 2022. "Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module," Applied Energy, Elsevier, vol. 327(C).
- Hongxu Li & Qing Gao & Yan Wang, 2023. "Experimental Investigation of the Thermal Runaway Propagation Characteristics and Thermal Failure Prediction Parameters of Six-Cell Lithium-Ion Battery Modules," Energies, MDPI, vol. 16(13), pages 1-14, July.
- Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
- Mao, Binbin & Liu, Chaoqun & Yang, Kai & Li, Shi & Liu, Pengjie & Zhang, Mingjie & Meng, Xiangdong & Gao, Fei & Duan, Qiangling & Wang, Qingsong & Sun, Jinhua, 2021. "Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
- Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
- Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
- Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
- Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
- Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
- Jie, Deng & Baohui, Chen & Jiazheng, Lu & Tiannian, Zhou & Chuanping, Wu, 2024. "Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium‑iron phosphate battery under different thermal runaway triggering modes," Applied Energy, Elsevier, vol. 368(C).
- Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
- Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
- Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
- Wang, Zhi & Wang, Jian, 2020. "Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials," Energy, Elsevier, vol. 204(C).
- Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
- Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
- Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
- Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
- Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
- Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
- Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
More about this item
Keywords
Lithium-ion battery safety; Thermal runaway; Gas generation; Jet flow; Fire dynamics; Flame height;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.