IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipbs030626192402258x.html
   My bibliography  Save this article

A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway

Author

Listed:
  • Cheng, Zhixiang
  • Min, Yuanyuan
  • Qin, Peng
  • Zhang, Yue
  • Li, Junyuan
  • Mei, Wenxin
  • Wang, Qingsong

Abstract

The inner pressure that increases due to the complex physical and chemical reactions of batteries plays an important role in thermal runaway early warning and gas injection. However, most of the current thermal-pressure coupling models for batteries cannot accurately describe the gas generation sources and predict the inner pressure increases of multiple jelly rolls. In this work, we propose a thermal-pressure coupling model by combining the gas composition data and the fitting data from the accelerating rate calorimeter experiment. The electrolyte vapor pressure and internal gas composition are obtained under uniform heating conditions. The internal pressure growth source relies on the variation in the gas composition at different temperature ranges to infer. The reaction kinetics equations are then combined with gas generation sources, energy conservation equations and venting process to form a thermal-pressure model, which adopts a distributed structure to adapt to the temperature gradient between jelly rolls. The simulation results indicate that the model can accurately match the reaction gas accumulation phase before the valve venting, as well as the thermal runaway and cooling process temperature after the ejection. The simulation results indicate that when the pressure threshold increases from 0.5 MPa to 0.75 MPa, both the time-to-venting and time-to-peak temperature increase, but the interval between them decreases. Additionally, the explosion concentration range of the mixture gas also increases accordingly. This model revealed the inner pressure increase and thermal runaway process in large-format lithium iron phosphate batteries, offering guidance for early warning and safety design.

Suggested Citation

  • Cheng, Zhixiang & Min, Yuanyuan & Qin, Peng & Zhang, Yue & Li, Junyuan & Mei, Wenxin & Wang, Qingsong, 2025. "A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway," Applied Energy, Elsevier, vol. 378(PB).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pb:s030626192402258x
    DOI: 10.1016/j.apenergy.2024.124875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402258X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pb:s030626192402258x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.