IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013769.html
   My bibliography  Save this article

Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module

Author

Listed:
  • Zhou, Zhizuan
  • Zhou, Xiaodong
  • Li, Maoyu
  • Cao, Bei
  • Liew, K.M.
  • Yang, Lizhong

Abstract

Thermal runaway (TR) propagation was considered to be the utmost safety issue in the application of lithium-ion batteries (LIBs) due to the high risk of fire or explosion, which raised extensive concerns. However, the scientific knowledge of TR propagation prevention on batteries with high capacity is still lacking. In this study, TR propagation behaviors in the large-format battery module were investigated through experiments. In addition, the effects of thermal insulation (aerogel) and a couple of thermal insulation and phase change material (PCM) on the inhibition mechanism of TR propagation were identified. An increasing tendency in maximum temperatures and peak mass-loss rates of batteries was observed with the proceeding of TR propagation, which was attributed to the pre-heating effect. During TR propagation, the energy released by the TR battery was responsible for the triggering of TR in its adjacent battery, accounting for more than 65%. Inserting the aerogel between adjacent batteries can effectively inhibit the propagation of TR, but easily resulted in the accumulation of thermal energy in the battery module. Compared with the insertion of the aerogel, coupling the thermal insulation of aerogel and the heat latent of PCM not only promoted the performance in preventing TR propagation, but also enhanced the heat dissipation capacity of the battery module. These findings provide deeper insights into TR propagation mechanisms and verification of the effectiveness of the combination of aerogel and PCM in quenching TR propagation, holding an enormous promise for the safer battery module.

Suggested Citation

  • Zhou, Zhizuan & Zhou, Xiaodong & Li, Maoyu & Cao, Bei & Liew, K.M. & Yang, Lizhong, 2022. "Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013769
    DOI: 10.1016/j.apenergy.2022.120119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Wang, Zhi & Wang, Jian, 2020. "Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials," Energy, Elsevier, vol. 204(C).
    3. Mao, Binbin & Zhao, Chunpeng & Chen, Haodong & Wang, Qingsong & Sun, Jinhua, 2021. "Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery," Applied Energy, Elsevier, vol. 281(C).
    4. Huang, Peifeng & Ping, Ping & Li, Ke & Chen, Haodong & Wang, Qingsong & Wen, Jennifer & Sun, Jinhua, 2016. "Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode," Applied Energy, Elsevier, vol. 183(C), pages 659-673.
    5. Kvasha, Andriy & Gutiérrez, César & Osa, Urtzi & de Meatza, Iratxe & Blazquez, J. Alberto & Macicior, Haritz & Urdampilleta, Idoia, 2018. "A comparative study of thermal runaway of commercial lithium ion cells," Energy, Elsevier, vol. 159(C), pages 547-557.
    6. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    7. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    8. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    9. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    10. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    11. Said, Ahmed O. & Lee, Christopher & Stoliarov, Stanislav I. & Marshall, André W., 2019. "Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays," Applied Energy, Elsevier, vol. 248(C), pages 415-428.
    12. Qin, Peng & Jia, Zhuangzhuang & Wu, Jingyun & Jin, Kaiqiang & Duan, Qiangling & Jiang, Lihua & Sun, Jinhua & Ding, Jinghu & Shi, Cheng & Wang, Qingsong, 2022. "The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes," Applied Energy, Elsevier, vol. 313(C).
    13. Mao, Binbin & Liu, Chaoqun & Yang, Kai & Li, Shi & Liu, Pengjie & Zhang, Mingjie & Meng, Xiangdong & Gao, Fei & Duan, Qiangling & Wang, Qingsong & Sun, Jinhua, 2021. "Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    15. Fabian Duffner & Niklas Kronemeyer & Jens Tübke & Jens Leker & Martin Winter & Richard Schmuch, 2021. "Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure," Nature Energy, Nature, vol. 6(2), pages 123-134, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    2. Chen, Mingyi & Zhu, Minghao & Zhao, Luyao & Chen, Yin, 2024. "Study on thermal runaway propagation inhibition of battery module by flame-retardant phase change material combined with aerogel felt," Applied Energy, Elsevier, vol. 367(C).
    3. Hao Chen & Kai Yang & Youwei Liu & Mingjie Zhang & Hao Liu & Jialiang Liu & Zhanzhan Qu & Yilin Lai, 2023. "Experimental Investigation of Thermal Runaway Behavior and Hazards of a 1440 Ah LiFePO 4 Battery Pack," Energies, MDPI, vol. 16(8), pages 1-14, April.
    4. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Xie, Lin & Ustolin, Federico & Lundteigen, Mary Ann & Li, Tian & Liu, Yiliu, 2022. "Performance analysis of safety barriers against cascading failures in a battery pack," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Lingzhi Wang & Yang Bu & Yichun Wu, 2024. "Multi-Scale Risk-Informed Comprehensive Assessment Methodology for Lithium-Ion Battery Energy Storage System," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    7. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    8. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    2. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    3. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    4. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    5. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    6. Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
    7. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    8. Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
    9. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    10. Hao Chen & Kai Yang & Youwei Liu & Mingjie Zhang & Hao Liu & Jialiang Liu & Zhanzhan Qu & Yilin Lai, 2023. "Experimental Investigation of Thermal Runaway Behavior and Hazards of a 1440 Ah LiFePO 4 Battery Pack," Energies, MDPI, vol. 16(8), pages 1-14, April.
    11. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    12. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).
    13. Zhang, Yue & Cheng, Siyuan & Mei, Wenxin & Jiang, Lihua & Jia, Zhuangzhuang & Cheng, Zhixiang & Sun, Jinhua & Wang, Qingsong, 2023. "Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis," Applied Energy, Elsevier, vol. 336(C).
    14. Mao, Binbin & Liu, Chaoqun & Yang, Kai & Li, Shi & Liu, Pengjie & Zhang, Mingjie & Meng, Xiangdong & Gao, Fei & Duan, Qiangling & Wang, Qingsong & Sun, Jinhua, 2021. "Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    16. Tan, Jiawei & Chen, Xingyu & Bu, Yang & Wang, Feng & Wang, Jialing & Huang, Xianan & Hu, Zhenda & Liu, Lin & Lin, Changzhui & Meng, Chao & Lin, Jian & Xie, Shan & Xu, Jinmei & Jing, Rui & Zhao, Yingru, 2024. "Incorporating FFTA based safety assessment of lithium-ion battery energy storage systems in multi-objective optimization for integrated energy systems," Applied Energy, Elsevier, vol. 367(C).
    17. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Zhu, Nannan & Tang, Fei, 2024. "Experimental study on flame morphology, ceiling temperature and carbon monoxide generation characteristic of prismatic lithium iron phosphate battery fires with different states of charge in a tunnel," Energy, Elsevier, vol. 301(C).
    19. Mao, Ning & Gadkari, Siddharth & Wang, Zhirong & Zhang, Teng & Bai, Jinglong & Cai, Qiong, 2023. "A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions," Energy, Elsevier, vol. 278(PB).
    20. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.