Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129651
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kamilaris, Andreas & Kalluri, Balaji & Kondepudi, Sekhar & Kwok Wai, Tham, 2014. "A literature survey on measuring energy usage for miscellaneous electric loads in offices and commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 536-550.
- Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
- Anand, Prashant & Cheong, David & Sekhar, Chandra & Santamouris, Mattheos & Kondepudi, Sekhar, 2019. "Energy saving estimation for plug and lighting load using occupancy analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1143-1161.
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
- Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
- Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
- Tang, Hong & Wang, Shengwei, 2023. "Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets," Energy, Elsevier, vol. 264(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Chengyu & Luo, Zhiwen & Rezgui, Yacine & Zhao, Tianyi, 2024. "Enhancing building energy consumption prediction introducing novel occupant behavior models with sparrow search optimization and attention mechanisms: A case study for forty-five buildings in a univer," Energy, Elsevier, vol. 294(C).
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
- P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Chengyu & Luo, Zhiwen & Rezgui, Yacine & Zhao, Tianyi, 2024. "Enhancing building energy consumption prediction introducing novel occupant behavior models with sparrow search optimization and attention mechanisms: A case study for forty-five buildings in a univer," Energy, Elsevier, vol. 294(C).
- Botman, Lola & Lago, Jesus & Fu, Xiaohan & Chia, Keaton & Wolf, Jesse & Kleissl, Jan & De Moor, Bart, 2024. "Building plug load mode detection, forecasting and scheduling," Applied Energy, Elsevier, vol. 364(C).
- Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
- Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
- Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
- Zhang, Xiang & Rasmussen, Christoffer & Saelens, Dirk & Roels, Staf, 2022. "Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
- Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
- Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
- Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
- Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
- Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
- Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
- Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
More about this item
Keywords
Building plug load; Plug-load electricity consumption prediction; Socket-related occupant behavior; Bidirectional long short-term memory; Swarm intelligent optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.