IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5692-d1428348.html
   My bibliography  Save this article

Energy Consumption Calculation of Civil Buildings in Regional Integrated Energy Systems: A Review of Characteristics, Methods and Application Prospects

Author

Listed:
  • Qicong Cai

    (School of Energy & Architecture, Xi’an Aeronautical Institute, Xi’an 710077, China)

  • Baizhan Li

    (Joint International Research Laboratory of Green Buildings and Built Environments, Chongqing University, Chongqing 400045, China)

  • Wenbo He

    (School of Energy & Architecture, Xi’an Aeronautical Institute, Xi’an 710077, China)

  • Miao Guo

    (School of Energy & Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China)

Abstract

Civil buildings play a critical role in urban energy consumption. The energy consumption of civil buildings significantly affects energy allocation and conservation management within regional integrated energy systems (RIESs). This paper first analyzes the influencing factors of civil building energy consumption, as well as the energy consumption characteristics of different types of buildings such as office buildings, shopping malls, hospitals, hotels, and residential buildings. Subsequently, it reviews methodologies for calculating operational energy consumption, offering valuable insights for the optimization and strategic adjustments of an RIES. Finally, the paper assesses the application potential of these calculation methods within an RIES and discusses the future development trend of calculating civil building energy consumption.

Suggested Citation

  • Qicong Cai & Baizhan Li & Wenbo He & Miao Guo, 2024. "Energy Consumption Calculation of Civil Buildings in Regional Integrated Energy Systems: A Review of Characteristics, Methods and Application Prospects," Sustainability, MDPI, vol. 16(13), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5692-:d:1428348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    2. Marzouk, Mohamed & Seleem, Noreihan, 2018. "Assessment of existing buildings performance using system dynamics technique," Applied Energy, Elsevier, vol. 211(C), pages 1308-1323.
    3. Zheng, Jiajia & Dang, Yongjie & Assad, Ullah, 2024. "Household energy consumption, energy efficiency, and household income–Evidence from China," Applied Energy, Elsevier, vol. 353(PA).
    4. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    5. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    2. Moe Soheilian & Géza Fischl & Myriam Aries, 2021. "Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Marek Walacik & Aneta Chmielewska, 2024. "Energy Performance in Residential Buildings as a Property Market Efficiency Driver," Energies, MDPI, vol. 17(10), pages 1-18, May.
    5. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    6. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    8. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    9. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    10. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Sun, Yuhuan & Li, Hui & Zhu, Bingcheng, 2024. "Factor market distortion, total factor energy efficiency and energy shadow price: A case of Chinese manufacturing industry," Energy, Elsevier, vol. 307(C).
    12. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    13. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    14. Gökhan Demirdöğen & Zeynep Işık & Yusuf Arayici, 2020. "Lean Management Framework for Healthcare Facilities Integrating BIM, BEPS and Big Data Analytics," Sustainability, MDPI, vol. 12(17), pages 1-33, August.
    15. Fathia Chekired & Oussama Taabli & Zakaria Mehdi Khellili & Amar Tilmatine & Aníbal T. de Almeida & Laurent Canale, 2022. "Near-Zero-Energy Building Management Based on Arduino Microcontroller—On-Site Lighting Management Application," Energies, MDPI, vol. 15(23), pages 1-20, November.
    16. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    17. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    18. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Meiyan Wang & Ying Xu & Runtian Shen & Yun Wu, 2024. "Performance-Oriented Parametric Optimization Design for Energy Efficiency of Rural Residential Buildings: A Case Study from China’s Hot Summer and Cold Winter Zone," Sustainability, MDPI, vol. 16(19), pages 1-30, September.
    20. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5692-:d:1428348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.