IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10842-d902634.html
   My bibliography  Save this article

Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany

Author

Listed:
  • Purna Prakash Kasaraneni

    (School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, India)

  • Venkata Pavan Kumar Yellapragada

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, India)

  • Ganesh Lakshmana Kumar Moganti

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, India)

  • Aymen Flah

    (Energy Processes Environment and Electrical Systems Unit, National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia)

Abstract

High-quality data are always desirable for superior decision-making in smart buildings. However, latency issues, communication failures, meter glitches, etc., create data anomalies. Especially, the redundant/duplicate records captured at the same time instants are critical anomalies. Two such cases are the same timestamps with the same energy consumption reading and the same timestamps with different energy consumption readings. This causes data inconsistency that deludes decision-making and analytics. Thus, such anomalies must be properly identified. So, this paper performs an enumeration of redundant data anomalies in smart building energy consumption readings using an analytical approach with 4-phases (sub-dataset extraction, quantification, visualization, and analysis). This provides the count, distribution, type, and correlation of redundancies. Smart buildings’ energy consumption dataset of Darmstadt city, Germany, was used in this study. From this study, the highest count of redundancies is observed as 5060 on 26 January 2012 with the average count of redundancies at the hour level being 211 and the minute level being 7. Similarly, the lowest count of redundancies is observed as 89 on 24 January 2012. Further, out of these 5060 redundancies, 1453 redundancies are found with the same readings and 3607 redundancies are found with different readings. Additionally, it is identified that there are only 14 min out of 1440 min on 26 January 2012 without having any redundancy. This means that almost 99% of the minutes in the day possess some kind of redundancies, where the energy consumption readings were recorded mostly with two occurrences, moderately with three occurrences, and very few with four and five occurrences. Thus, these findings help in enhancing the quality of data for better analytics.

Suggested Citation

  • Purna Prakash Kasaraneni & Venkata Pavan Kumar Yellapragada & Ganesh Lakshmana Kumar Moganti & Aymen Flah, 2022. "Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10842-:d:902634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Paradiso & Federica Paganelli & Dino Giuli & Samuele Capobianco, 2016. "Context-Based Energy Disaggregation in Smart Homes," Future Internet, MDPI, vol. 8(1), pages 1-22, January.
    2. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    3. Schuelke-Leech, Beth-Anne & Barry, Betsy & Muratori, Matteo & Yurkovich, B.J., 2015. "Big Data issues and opportunities for electric utilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 937-947.
    4. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    5. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khasim Vali Dudekula & Hussain Syed & Mohamed Iqbal Mahaboob Basha & Sudhakar Ilango Swamykan & Purna Prakash Kasaraneni & Yellapragada Venkata Pavan Kumar & Aymen Flah & Ahmad Taher Azar, 2023. "Convolutional Neural Network-Based Personalized Program Recommendation System for Smart Television Users," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Michaela Kollarova & Tomas Granak & Stanislava Strelcova & Jozef Ristvej, 2023. "Conceptual Model of Key Aspects of Security and Privacy Protection in a Smart City in Slovakia," Sustainability, MDPI, vol. 15(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).
    2. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Pablo David Necoechea-Porras & Asunción López & Juan Carlos Salazar-Elena, 2021. "Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    5. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    6. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    7. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    8. Changho Shin & Seungeun Rho & Hyoseop Lee & Wonjong Rhee, 2019. "Data Requirements for Applying Machine Learning to Energy Disaggregation," Energies, MDPI, vol. 12(9), pages 1-19, May.
    9. Gogulamudi Pradeep Reddy & Yellapragada Venkata Pavan Kumar & Maddikera Kalyan Chakravarthi & Aymen Flah, 2022. "Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    10. Matti Grosse & Hendrik Send & Thomas Schildhauer, 2019. "Lessons Learned from Establishing the Energy-Informatics Business Model: Case of a German Energy Company," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    11. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    12. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    13. Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    14. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    15. Haipeng Pan & Zhongqian Yin & Xianzhi Jiang, 2022. "High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies," Energies, MDPI, vol. 15(17), pages 1-14, August.
    16. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Meiyan Wang & Ying Xu & Runtian Shen & Yun Wu, 2024. "Performance-Oriented Parametric Optimization Design for Energy Efficiency of Rural Residential Buildings: A Case Study from China’s Hot Summer and Cold Winter Zone," Sustainability, MDPI, vol. 16(19), pages 1-30, September.
    18. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    19. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    20. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10842-:d:902634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.