IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920310813.html
   My bibliography  Save this article

Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment

Author

Listed:
  • Lee, Yohan
  • Deusner, Christian
  • Kossel, Elke
  • Choi, Wonjung
  • Seo, Yongwon
  • Haeckel, Matthias

Abstract

This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs.

Suggested Citation

  • Lee, Yohan & Deusner, Christian & Kossel, Elke & Choi, Wonjung & Seo, Yongwon & Haeckel, Matthias, 2020. "Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310813
    DOI: 10.1016/j.apenergy.2020.115569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Han, Han, 2018. "Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system," Applied Energy, Elsevier, vol. 226(C), pages 916-923.
    2. Lee, Yohan & Choi, Wonjung & Seo, Young-ju & Lee, Joo Yong & Lee, Jaehyoung & Seo, Yongwon, 2018. "Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 228(C), pages 229-239.
    3. Klaus Wallmann & Elena Pinero & Ewa Burwicz & Matthias Haeckel & Christian Hensen & Andrew Dale & Lars Ruepke, 2012. "The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach," Energies, MDPI, vol. 5(7), pages 1-50, July.
    4. Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
    5. Lee, Yohan & Lee, Dongyoung & Lee, Jong-Won & Seo, Yongwon, 2016. "Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 163(C), pages 51-59.
    6. Christian Deusner & Nikolaus Bigalke & Elke Kossel & Matthias Haeckel, 2012. "Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO 2," Energies, MDPI, vol. 5(7), pages 1-29, June.
    7. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    8. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    9. Li, Yanghui & Liu, Weiguo & Zhu, Yiming & Chen, Yunfei & Song, Yongchen & Li, Qingping, 2016. "Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods," Applied Energy, Elsevier, vol. 162(C), pages 1627-1632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Wonjung & Mok, Junghoon & Lee, Yohan & Lee, Jaehyoung & Seo, Yongwon, 2021. "Optimal driving force for the dissociation of CH4 hydrates in hydrate-bearing sediments using depressurization," Energy, Elsevier, vol. 223(C).
    2. Zhang, Shanling & Ma, Yingrui & Xu, Zhenhua & Zhang, Yongtian & Liu, Xiang & Zhong, Xiuping & Tu, Guigang & Chen, Chen, 2024. "Numerical simulation study of natural gas hydrate extraction by depressurization combined with CO2 replacement," Energy, Elsevier, vol. 303(C).
    3. Jianye Sun & Xiluo Hao & Chengfeng Li & Nengyou Wu & Qiang Chen & Changling Liu & Yanlong Li & Qingguo Meng & Li Huang & Qingtao Bu, 2022. "Experimental Study on the Distribution Characteristics of CO 2 in Methane Hydrate-Bearing Sediment during CH 4 /CO 2 Replacement," Energies, MDPI, vol. 15(15), pages 1-14, August.
    4. Li, Xiao-Yan & Wan, Kun & Wang, Yi & Li, Xiao-Sen, 2022. "The double-edged characteristics of the soaking time during hydrate dissociation by periodic depressurization combined with hot water injection," Applied Energy, Elsevier, vol. 325(C).
    5. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    6. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    7. He, Juan & Li, Xiaosen & Chen, Zhaoyang & You, Changyu & Peng, Hao & Zhang, Zhiwen, 2022. "Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers," Energy, Elsevier, vol. 238(PA).
    8. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).
    9. Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
    10. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    11. Zhao, Yingjie & Hu, Wei & Dou, Xiaofeng & Liu, Zhichao & Ning, Fulong, 2024. "Experimental investigation on the geological responses and production behaviors of natural gas hydrate-bearing sediments under various hydrate saturations and depressurization strategies," Applied Energy, Elsevier, vol. 374(C).
    12. Ouyang, Q. & Pandey, J.S. & Xu, Y. & von Solms, N., 2024. "Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    13. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    14. Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
    15. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Lee, Yohan & Choi, Wonjung & Seo, Young-ju & Lee, Joo Yong & Lee, Jaehyoung & Seo, Yongwon, 2018. "Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 228(C), pages 229-239.
    3. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    4. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    5. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    6. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    7. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    8. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    9. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    10. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    11. Panagiotis Kastanidis & George E. Romanos & Athanasios K. Stubos & Georgia Pappa & Epaminondas Voutsas & Ioannis N. Tsimpanogiannis, 2024. "Evaluation of a Simplified Model for Three-Phase Equilibrium Calculations of Mixed Gas Hydrates," Energies, MDPI, vol. 17(2), pages 1-22, January.
    12. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    13. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    14. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    15. Seo, Young-ju & Park, Seongmin & Kang, Hyery & Ahn, Yun-Ho & Lim, Dongwook & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Ahn, Taewoong & Seo, Yongwon & Lee, Huen, 2016. "Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage," Applied Energy, Elsevier, vol. 178(C), pages 579-586.
    16. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    17. Cai, Jing & Lv, Tao & Zhang, Yu & von Solms, Nicolas & Xu, Chun-Gang & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Studies on temperature characteristics and initial formation interface during cyclopentane-methane hydrate formation in large-scale equipment with bubbling," Applied Energy, Elsevier, vol. 258(C).
    18. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    19. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    20. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.