IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v203y2024ics1364032124004404.html
   My bibliography  Save this article

Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air

Author

Listed:
  • Ouyang, Q.
  • Pandey, J.S.
  • Xu, Y.
  • von Solms, N.

Abstract

Exploitation of natural gas hydrates provides an alternative way to address energy crisis. Dilute CO2 gas (13–30mol%CO2 with remaining N2/Air) injection into CH4 hydrates for hydrate swapping (SW) allows cheaper and more practical CH4 recovery and in-situ CO2 sequestration. However, the roles of N2/Air in dilute CO2 gas during exploitation remain unknown. It is unclear whether depressurization should be coupled after SW and continued below CH4 hydrate stability pressure. This work employed multistep depressurization (MD) to dissociate the mixed hydrates formed after SW from 86.5 to 97.9 bar at 0.7–1.2 °C in bulk-water and sandpack with CH4 hydrate saturation of 4.1–25.3 %. Effects of N2/Air on exploitation were investigated by examining hydrate morphologies and gas compositions. Morphological results in bulk-water indicated higher N2 fraction in 20mol%CO2/N2 triggered more CO2-rich hydrate reformation and CH4-rich hydrate dissociation. Exploitation results in sandpack indicated 13mol%CO2/N2 produced the highest CH4 swapping percent (46.6 %) and CO2 hydrate sequestration percent (29.1 %). Air exerted weaker promoting effects on exploitation compared with equivalent N2. The promotion of N2/Air on exploitation was dominated by dilute CO2 gas injection altering mixed hydrate equilibrium which varied with time-dependent gaseous compositions during MD. l-methionine of 3000 ppm had stronger promoting effects on CO2 sequestration in sandpack than bulk-water depending on mass transfer and water availability. Ceasing points (13.9–31.4 bar) suggested MD could be continued below CH4/above CO2 hydrate stability pressures and before water production. For the first time, this study provided insights into the roles of N2/Air to determine injection gas types and depressurization schemes for efficient and safe hydrate exploitation in gas-rich hydrate-bearing sediment.

Suggested Citation

  • Ouyang, Q. & Pandey, J.S. & Xu, Y. & von Solms, N., 2024. "Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124004404
    DOI: 10.1016/j.rser.2024.114714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124004404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.