IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp274-283.html
   My bibliography  Save this article

Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment

Author

Listed:
  • Chen, Bingbing
  • Sun, Huiru
  • Zhou, Hang
  • Yang, Mingjun
  • Wang, Dayong

Abstract

Natural gas hydrates (NGHs) widely exist in continental permafrost or marine sediment, and with a carbon quantity twice that of all fossil fuels combined, they are a potential energy source for the future. The efficient exploitation of NGHs has been a popular topic of research worldwide. Currently, existing NGH exploitation methods each present characteristic defect. In this study, by combining visualization studies with sea water phase migration, which is a crucial factor influencing NGH exploitation, the method of water flow erosion was utilized to enhance the driving force of methane hydrate (MH) dissociation. The influence of seawater migration on MH dissociation was systematically and visually studied by controlling different back pressures and seawater flow rates. There was no observed influence of temperature or pressure variation during the MH dissociation process. The results showed that the chemical potential difference between the hydrate phase and aqueous phase caused MH dissociation during the seawater flow process and that the rate of MH dissociation increased with decreasing backpressure and increasing water flow rate. It can be predicted that there will be no MH dissociation or time variations of absolute MH dissociation when the water flow rate is sufficiently low or high. The water migration, water phase permeability and MH dissociation strongly interacted with one another. This study combined a visualization study with theoretical analysis and first found that the gradient decrease of pressure difference lead to the increase of permeability during different stages of the seawater flow process.

Suggested Citation

  • Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:274-283
    DOI: 10.1016/j.apenergy.2019.01.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    2. Zhao, Jiafei & Fan, Zhen & Wang, Bin & Dong, Hongsheng & Liu, Yu & Song, Yongchen, 2016. "Simulation of microwave stimulation for the production of gas from methane hydrate sediment," Applied Energy, Elsevier, vol. 168(C), pages 25-37.
    3. Bo Li & Xiao-Sen Li & Gang Li & Jia-Lin Jia & Jing-Chun Feng, 2013. "Measurements of Water Permeability in Unconsolidated Porous Media with Methane Hydrate Formation," Energies, MDPI, vol. 6(7), pages 1-15, July.
    4. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    5. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    6. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    7. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    8. Chong, Zheng Rong & Pujar, Girish Anand & Yang, Mingjun & Linga, Praveen, 2016. "Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery," Applied Energy, Elsevier, vol. 177(C), pages 409-421.
    9. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    10. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    12. Judith M. Schicks & Erik Spangenberg & Ronny Giese & Manja Luzi-Helbing & Mike Priegnitz & Bettina Beeskow-Strauch, 2013. "A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments," Energies, MDPI, vol. 6(6), pages 1-15, June.
    13. Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    15. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    16. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    17. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    18. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    19. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    20. Zhao, Jiafei & Song, Yongchen & Lim, Xin-Le & Lam, Wei-Haur, 2017. "Opportunities and challenges of gas hydrate policies with consideration of environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 875-885.
    21. Li, Yanghui & Liu, Weiguo & Zhu, Yiming & Chen, Yunfei & Song, Yongchen & Li, Qingping, 2016. "Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods," Applied Energy, Elsevier, vol. 162(C), pages 1627-1632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    2. Chen, Bingbing & Liu, Zheyuan & Sun, Huiru & Zhao, Guojun & Sun, Xiang & Yang, Mingjun, 2021. "The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors," Energy, Elsevier, vol. 233(C).
    3. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    4. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    5. Cheng, Fanbao & Wu, Zhaoran & Sun, Xiang & Shen, Shi & Wu, Peng & Liu, Weiguo & Chen, Bingbing & Liu, Xuanji & Li, Yanghui, 2023. "Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization," Energy, Elsevier, vol. 264(C).
    6. Bhattacharjee, Gaurav & Choudhary, Nilesh & Barmecha, Vivek & Kushwaha, Omkar S. & Pande, Nawal K. & Chugh, Parivesh & Roy, Sudip & Kumar, Rajnish, 2019. "Methane recovery from marine gas hydrates: A bench scale study in presence of low dosage benign additives," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Sun, Huiru & Chen, Bingbing & Zhao, Guojun & Zhao, Yuechao & Yang, Mingjun & Song, Yongchen, 2020. "The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production," Applied Energy, Elsevier, vol. 276(C).
    8. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    9. He, Juan & Li, Xiaosen & Chen, Zhaoyang, 2023. "Effective permeability changes during hydrate production," Energy, Elsevier, vol. 282(C).
    10. Chen, Bingbing & Sun, Huiru & Zheng, Junjie & Yang, Mingjun, 2020. "New insights on water-gas flow and hydrate decomposition behaviors in natural gas hydrates deposits with various saturations," Applied Energy, Elsevier, vol. 259(C).
    11. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    12. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    13. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    2. Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate depositsā˜†," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
    3. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    4. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    5. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    6. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    7. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    8. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    9. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    10. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    11. He, Juan & Li, Xiaosen & Chen, Zhaoyang & You, Changyu & Peng, Hao & Zhang, Zhiwen, 2022. "Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers," Energy, Elsevier, vol. 238(PA).
    12. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    13. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    14. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    15. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    16. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Wang, Bin & Fan, Zhen & Zhao, Jiafei & Lv, Xin & Pang, Weixin & Li, Qingping, 2018. "Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach," Applied Energy, Elsevier, vol. 229(C), pages 858-871.
    18. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    19. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    20. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:274-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.