IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013025.html
   My bibliography  Save this article

The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement

Author

Listed:
  • Mok, Junghoon
  • Choi, Wonjung
  • Seo, Yongwon

Abstract

In this study, the dissociation behavior and the time-dependent guest distributions of methane (CH4) hydrate after the injection of gaseous N2 were closely investigated using gas chromatography, in situ Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy for two different N2 gas injecting pressures (4.0 and 8.0 MPa) at three different temperatures (268.8, 274.2, and 278.2 K). The dissociation kinetics of the CH4 hydrate were accelerated at a higher temperature and a lower N2 injecting pressure. Time-dependent Raman spectra confirmed that the N2 molecules began to be captured in the hydrate cages immediately after the N2 gas injection at 268.8 K, and the extent of N2 incorporation in the hydrate phase increased at a higher N2 gas injecting pressure. The 13C NMR spectra revealed that an increase in the N2 composition in the hydrate phase induced a structural transition of the CH4 + N2 hydrates from sI to sII and that N2 molecules were preferentially captured in the small (512) cages of the CH4 + N2 hydrates. The overall results provide deep insight into the exact role of N2 molecules in the inhibitor injection method and CH4 – CO2 + N2 replacement methods for the exploitation of natural gas hydrates.

Suggested Citation

  • Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013025
    DOI: 10.1016/j.energy.2021.121054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    2. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    3. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2021. "Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids," Applied Energy, Elsevier, vol. 287(C).
    4. Lee, Yohan & Choi, Wonjung & Seo, Young-ju & Lee, Joo Yong & Lee, Jaehyoung & Seo, Yongwon, 2018. "Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 228(C), pages 229-239.
    5. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    6. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    7. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Lee, Yohan & Lee, Dongyoung & Lee, Jong-Won & Seo, Yongwon, 2016. "Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 163(C), pages 51-59.
    9. Liu, Yongge & Hou, Jian & Chen, Zhangxin & Bai, Yajie & Su, Haiyang & Zhao, Ermeng & Li, Guangming, 2021. "Enhancing hot water flooding in hydrate bearing layers through a novel staged production method," Energy, Elsevier, vol. 217(C).
    10. Choi, Wonjung & Mok, Junghoon & Lee, Yohan & Lee, Jaehyoung & Seo, Yongwon, 2021. "Optimal driving force for the dissociation of CH4 hydrates in hydrate-bearing sediments using depressurization," Energy, Elsevier, vol. 223(C).
    11. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    12. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    13. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    14. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianye Sun & Xiluo Hao & Chengfeng Li & Nengyou Wu & Qiang Chen & Changling Liu & Yanlong Li & Qingguo Meng & Li Huang & Qingtao Bu, 2022. "Experimental Study on the Distribution Characteristics of CO 2 in Methane Hydrate-Bearing Sediment during CH 4 /CO 2 Replacement," Energies, MDPI, vol. 15(15), pages 1-14, August.
    2. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    3. Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
    4. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    4. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    5. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    6. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    7. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    8. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    9. Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
    10. Seo, Young-ju & Park, Seongmin & Kang, Hyery & Ahn, Yun-Ho & Lim, Dongwook & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Ahn, Taewoong & Seo, Yongwon & Lee, Huen, 2016. "Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage," Applied Energy, Elsevier, vol. 178(C), pages 579-586.
    11. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    12. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    13. He, Juan & Li, Xiaosen & Chen, Zhaoyang & You, Changyu & Peng, Hao & Zhang, Zhiwen, 2022. "Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers," Energy, Elsevier, vol. 238(PA).
    14. Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
    15. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).
    16. Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
    17. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    18. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    19. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    20. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).

    More about this item

    Keywords

    Natural gas hydrates; N2 injection; Kinetics; Cage preference; Replacement; Dissociation;
    All these keywords.

    JEL classification:

    • N2 - Economic History - - Financial Markets and Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.