IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp734-742.html
   My bibliography  Save this article

Integrated numerical and experimental study of a MCFC-plasma gasifier energy system

Author

Listed:
  • Falcucci, G.
  • Jannelli, E.
  • Minutillo, M.
  • Ubertini, S.
  • Han, J.
  • Yoon, S.P.
  • Nam, S.W.

Abstract

In the present work an investigation of the potential use of waste derived fuel gas in molten carbonate fuel cell (MCFC) systems is performed. A simple numerical model of a MCFC is developed following a “system-level” approach that allows to investigate the impact of MCFC performance with respect to efficiency and energy production in complex power systems. An extensive set of experimental tests have been performed on single MCFCs and the experimental data are used to update and validate the numerical model. The fuel cell model is then implemented into a thermo-chemical model of a novel waste treatment system based on plasma torch gasification, previously developed by the authors. The predicted performances of this waste-to-energy system based on the integration of a low pollutant waste treatment technology and a high efficiency power unit are particularly promising.

Suggested Citation

  • Falcucci, G. & Jannelli, E. & Minutillo, M. & Ubertini, S. & Han, J. & Yoon, S.P. & Nam, S.W., 2012. "Integrated numerical and experimental study of a MCFC-plasma gasifier energy system," Applied Energy, Elsevier, vol. 97(C), pages 734-742.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:734-742
    DOI: 10.1016/j.apenergy.2012.01.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
    2. Antolini, Ermete, 2011. "The stability of molten carbonate fuel cell electrodes: A review of recent improvements," Applied Energy, Elsevier, vol. 88(12), pages 4274-4293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    2. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    3. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    4. Zhang, Qinglin & Wu, Yueshi & Dor, Liran & Yang, Weihong & Blasiak, Wlodzimierz, 2013. "A thermodynamic analysis of solid waste gasification in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 112(C), pages 405-413.
    5. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    6. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    7. Nhuchhen, Daya R., 2023. "Integrated gasification carbon capture plant using molten carbonate fuel cell: An application to a cement industry," Energy, Elsevier, vol. 282(C).
    8. Verda, Vittorio & Sciacovelli, Adriano, 2012. "Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester," Energy, Elsevier, vol. 47(1), pages 150-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    2. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    3. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    4. Hongyu Huang & Jun Li & Zhaohong He & Tao Zeng & Noriyuki Kobayashi & Mitsuhiro Kubota, 2015. "Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas," Energies, MDPI, vol. 8(6), pages 1-17, June.
    5. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
    6. Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
    7. Chen Yang & Kangjie Deng & Hangxing He & Haochuang Wu & Kai Yao & Yuanzhe Fan, 2019. "Real-Time Interface Model Investigation for MCFC-MGT HILS Hybrid Power System," Energies, MDPI, vol. 12(11), pages 1-21, June.
    8. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    9. Kang, Sanggyu & Lee, Kanghun & Yu, Sangseok & Lee, Sang Min & Ahn, Kook-Young, 2014. "Development of a coupled reactor with a catalytic combustor and steam reformer for a 5kW solid oxide fuel cell system," Applied Energy, Elsevier, vol. 114(C), pages 114-123.
    10. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    12. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    13. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    14. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
    17. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    18. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    19. Zhang, Xiuqin & Liu, Huiying & Ni, Meng & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 407-414.
    20. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:734-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.