Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
- Krekel, Daniel & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2018. "The separation of CO2 from ambient air – A techno-economic assessment," Applied Energy, Elsevier, vol. 218(C), pages 361-381.
- Romuald Masnicki & Janusz Mindykowski & Beata Palczynska, 2022. "Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe," Energies, MDPI, vol. 15(13), pages 1-16, June.
- Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
- Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
- Saswati Sarmah & Lakhanlal & Biraj Kumar Kakati & Dhanapati Deka, 2023. "Recent advancement in rechargeable battery technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
- Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
- Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
- Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle," Energy, Elsevier, vol. 281(C).
- Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
- Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019.
"Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport,"
Applied Energy, Elsevier, vol. 240(C), pages 6-25.
- Emmanuel Hache & Gondia Sokhna Seck & Marine Simoen & Clement Bonnet & Samuel Carcanague, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Post-Print hal-02061459, HAL.
- Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
- Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
- Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024.
"Carbon capture: Storage vs. Utilization,"
Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
- Michel Moreaux & Jean-Pierre Amigues & Gerard van der Meijden & Cees Withagen, "undated". "Carbon Capture: Storage vs. Utilization," Tinbergen Institute Discussion Papers 22-041/VIII, Tinbergen Institute.
- Michel Moreaux & Jean-Pierre Amigues & Gerard van der Meijden & Cees Withagen, 2024. "Carbon capture: Storage vs. Utilization," Post-Print hal-04643896, HAL.
- Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
- Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
- Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
- Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
- Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
More about this item
Keywords
energy transition; industrial chemistry; chemical engineering; materials chemistry; materials engineering; sustainability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3565-:d:1439187. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.