IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp108-116.html
   My bibliography  Save this article

Poly-generating closed cathode fuel cell with carbon capture

Author

Listed:
  • McLarty, Dustin
  • Brouwer, Jack

Abstract

High temperature fuel cells are a promising technology for ultra-low emission power generation. This paper presents a novel poly-generating system capable of greater than 80% (LHV CH4) co-production efficiency with carbon capture and liquefaction. The proposed system synergistically integrates an air separation unit providing pure oxygen to a fuel cell and liquid nitrogen to a hydrogen separation unit. Both solid oxide and molten carbonate fuel cells may be capable of this integration with additional refrigeration load needed for the molten carbonate system to condense and recirculate carbon dioxide into the cathode stream. Stack temperature control utilizes the endothermic cooling effect of internal fuel reforming. The primary characteristic of the system, converting fuel cell waste heat to produce a secondary fuel (e.g. hydrogen), portends the ultra-high efficiency while enabling additional system design and integration synergies that may reduce complexity, cost, and load following constraints. A unique controller is developed for power and thermal management of a fuel-cooled fuel cell with anode recirculation. A brief economic analysis identifies the potential revenue from each of the four product streams, electricity, hydrogen, heat, and liquid CO2, and presents a conservative, yet favorable assessment of system costs relative to market electricity and hydrogen fuel prices.

Suggested Citation

  • McLarty, Dustin & Brouwer, Jack, 2014. "Poly-generating closed cathode fuel cell with carbon capture," Applied Energy, Elsevier, vol. 131(C), pages 108-116.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:108-116
    DOI: 10.1016/j.apenergy.2014.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914005856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campanari, Stefano & Manzolini, Giampaolo & Chiesa, Paolo, 2013. "Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming," Applied Energy, Elsevier, vol. 112(C), pages 772-783.
    2. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    3. Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
    4. Fu, Chao & Gundersen, Truls, 2013. "Recuperative vapor recompression heat pumps in cryogenic air separation processes," Energy, Elsevier, vol. 59(C), pages 708-718.
    5. Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
    6. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Ji Ho & Seo, Min Hyung & Kim, Tong Seop, 2021. "Efficiency maximization of a quadruple power generation system with zero carbon emission," Energy, Elsevier, vol. 226(C).
    2. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Ahn, Ji Ho & Kim, Tong Seop, 2020. "Effect of oxygen supply method on the performance of a micro gas turbine-based triple combined cycle with oxy-combustion carbon capture," Energy, Elsevier, vol. 211(C).
    4. Hu, Boxun & Keane, Michael & Patil, Kailash & Mahapatra, Manoj K. & Pasaogullari, Ugur & Singh, Prabhakar, 2014. "Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells," Applied Energy, Elsevier, vol. 134(C), pages 342-348.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    2. Jin, Bo & Zhao, Haibo & Zheng, Chuguang & Liang, Zhiwu, 2018. "Control optimization to achieve energy-efficient operation of the air separation unit in oxy-fuel combustion power plants," Energy, Elsevier, vol. 152(C), pages 313-321.
    3. Chen, Shiqing & Dong, Xuezhi & Xu, Jian & Zhang, Hualiang & Gao, Qing & Tan, Chunqing, 2019. "Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification," Energy, Elsevier, vol. 171(C), pages 341-359.
    4. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    5. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    6. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    7. Campanari, S. & Chiesa, P. & Manzolini, G. & Bedogni, S., 2014. "Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 130(C), pages 562-573.
    8. Ahn, Ji Ho & Seo, Min Hyung & Kim, Tong Seop, 2021. "Efficiency maximization of a quadruple power generation system with zero carbon emission," Energy, Elsevier, vol. 226(C).
    9. Fu, Qian & Kansha, Yasuki & Song, Chunfeng & Liu, Yuping & Ishizuka, Masanori & Tsutsumi, Atsushi, 2016. "A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants," Applied Energy, Elsevier, vol. 162(C), pages 1114-1121.
    10. Petrakopoulou, Fontina & Lee, Young Duk & Tsatsaronis, George, 2014. "Simulation and exergetic evaluation of CO2 capture in a solid-oxide fuel-cell combined-cycle power plant," Applied Energy, Elsevier, vol. 114(C), pages 417-425.
    11. Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
    12. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    13. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    14. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    15. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    16. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    17. Fu, Chao & Anantharaman, Rahul & Gundersen, Truls, 2015. "Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants," Energy, Elsevier, vol. 84(C), pages 612-622.
    18. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    19. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    20. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:108-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.