Comparing the dissociation kinetics of various gas hydrates during combustion: Assessment of key factors to improve combustion efficiency
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115042
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gregor Rehder & Robert Eckl & Markus Elfgen & Andrzej Falenty & Rainer Hamann & Nina Kähler & Werner F. Kuhs & Hans Osterkamp & Christoph Windmeier, 2012. "Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis," Energies, MDPI, vol. 5(7), pages 1-25, July.
- Yu-Chien Chien & Derek Dunn-Rankin, 2019. "Combustion Characteristics of Methane Hydrate Flames," Energies, MDPI, vol. 12(10), pages 1-11, May.
- Cui, Gan & Wang, Shun & Dong, Zengrui & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres," Applied Energy, Elsevier, vol. 257(C).
- Tupsakhare, Swanand S. & Castaldi, Marco J., 2019. "Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion," Applied Energy, Elsevier, vol. 236(C), pages 825-836.
- Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
- Kipyoung Kim & Hokeun Kang & Youtaek Kim, 2015. "Risk Assessment for Natural Gas Hydrate Carriers: A Hazard Identification (HAZID) Study," Energies, MDPI, vol. 8(4), pages 1-23, April.
- Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
- Misyura, S.Y., 2016. "Efficiency of methane hydrate combustion for different types of oxidizer flow," Energy, Elsevier, vol. 103(C), pages 430-439.
- Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
- Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
- Xiang-Ru Chen & Xiao-Sen Li & Zhao-Yang Chen & Yu Zhang & Ke-Feng Yan & Qiu-Nan Lv, 2015. "Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media," Energies, MDPI, vol. 8(2), pages 1-14, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
- Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
- Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
- Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
- Cui, Gan & Wang, Shun & Dong, Zengrui & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres," Applied Energy, Elsevier, vol. 257(C).
- Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Cui, Gan & Dong, Zengrui & Wang, Shun & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effect of the water on the flame characteristics of methane hydrate combustion," Applied Energy, Elsevier, vol. 259(C).
- Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
- Misyura S. Y. & Voytkov I. S. & Morozov V. S. & Manakov A. Y. & Yashutina O. S. & Ildyakov A. V., 2018. "An Experimental Study of Combustion of a Methane Hydrate Layer Using Thermal Imaging and Particle Tracking Velocimetry Methods," Energies, MDPI, vol. 11(12), pages 1-19, December.
- Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
- Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
- Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
- Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
- Li, Xiao-Yan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Hu, Heng-Qi, 2022. "Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes," Applied Energy, Elsevier, vol. 305(C).
- Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Bai, Yajie & Ji, Yunkai & Zhao, Ermeng & Chen, Weiqing & Zhou, Kang, 2019. "Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits," Energy, Elsevier, vol. 189(C).
- Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
- Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
- Amalija Božiček & Bojan Franc & Božidar Filipović-Grčić, 2022. "Early Warning Weather Hazard System for Power System Control," Energies, MDPI, vol. 15(6), pages 1-19, March.
- Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
More about this item
Keywords
Gas hydrate combustion; Gas hydrate dissociation; Heat transfer; Flame;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:270:y:2020:i:c:s0306261920305547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.