IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp835-844.html
   My bibliography  Save this article

Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme

Author

Listed:
  • Wang, Yi
  • Feng, Jing-Chun
  • Li, Xiao-Sen
  • Zhan, Lei
  • Li, Xiao-Yan

Abstract

Methane hydrate is considered as a potential source of methane for energy supply. Therefore, developing approaches for enhancing gas recovery from hydrate reservoir is attracting extensive attention. The Pilot-Scale Hydrate Simulator (PHS), with an inner volume of 117.8 L, was applied to investigate gas recovery approach from hydrate reservoir. A novel cycling depressurization was carried out to improve the production efficiency of depressurization method. Three different schemes for gas recovery from hydrate reservoir were performed in the PHS, which were the Regular Depressurization (RD), the Semi-Cycling Depressurization (Semi-CD), and the Cycling Depressurization (CD), respectively. The production behaviors and heat transfer characteristics during hydrate dissociation in sandy sediments by different methods were compared and investigated. The advantages of the novel cycling depressurization were analyzed. The experimental results indicate that the effective average gas production rate in the experiments by CD is 17 times larger than that by RD. The energy cost per volume of gas production by the CD scheme can be significantly reduced by comparing with the RD scheme. Therefore, the production efficiency can be strongly enhanced by using cycling depressurization method. If the hydrate is dissociated by RD, the heat transfer is strongly coupled with the hydrate dissociation. However, if the hydrate is dissociated by Semi-CD or CD, the coupling of heat transfer and hydrate dissociation may be changed. During the well closing stage in the Semi-CD or CD scheme, the lower fluids flow rate in pores leads to a lower heat transfer rate, which leads to a lower hydrate dissociation rate in well closing stage.

Suggested Citation

  • Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:835-844
    DOI: 10.1016/j.energy.2018.07.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Energy and entropy analyses of hydrate dissociation in different scales of hydrate simulator," Energy, Elsevier, vol. 102(C), pages 176-186.
    2. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    3. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    4. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    5. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    6. Judith M. Schicks & Erik Spangenberg & Ronny Giese & Bernd Steinhauer & Jens Klump & Manja Luzi, 2011. "New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments," Energies, MDPI, vol. 4(1), pages 1-22, January.
    7. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    8. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    9. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    10. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    12. Yang, Mingjun & Fu, Zhe & Jiang, Lanlan & Song, Yongchen, 2017. "Gas recovery from depressurized methane hydrate deposits with different water saturations," Applied Energy, Elsevier, vol. 187(C), pages 180-188.
    13. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    15. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Zhang, Yu, 2015. "Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir," Applied Energy, Elsevier, vol. 154(C), pages 995-1003.
    16. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
    17. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    6. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    7. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    8. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    9. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    10. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    11. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Energy and entropy analyses of hydrate dissociation in different scales of hydrate simulator," Energy, Elsevier, vol. 102(C), pages 176-186.
    12. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    13. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Han, Han, 2018. "Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system," Applied Energy, Elsevier, vol. 226(C), pages 916-923.
    15. Feng, Jing-Chun & Li, Bo & Li, Xiao-Sen & Wang, Yi, 2021. "Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator," Applied Energy, Elsevier, vol. 304(C).
    16. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    17. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    18. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    19. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    20. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2018. "Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method," Applied Energy, Elsevier, vol. 211(C), pages 1171-1178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:835-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.