IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp262-285.html
   My bibliography  Save this article

A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates

Author

Listed:
  • Veluswamy, Hari Prakash
  • Kumar, Asheesh
  • Seo, Yutaek
  • Lee, Ju Dong
  • Linga, Praveen

Abstract

Natural gas (NG), the cleanest burning fossil fuel, plays a crucial role in meeting the global energy demand, contributing to 24% and is projected to grow at a rate of about 2% until 2040. Natural gas is also considered as the bridging fuel to transition into a carbon-constrained world with reduced carbon dioxide emissions whilst catering to the huge energy demand. Efficient and effective modes of NG storage/transport are dire need in the current golden era of natural gas. A plethora of advantages offered by storing NG in the form of hydrates carve a niche for this novel technology. Termed as solidified natural gas (SNG) technology, it has remarkable potential to store multi-fold volumes of natural gas in compact hydrate crystals offering the safest and the most environmental friendly mode of NG storage. This review provides an account on the research efforts put forth in this technology. Hydrate formation and storage aspects have been examined thoroughly with a subtle account on the gas recovery. The review encompasses studies conducted using different promoters (thermodynamic, kinetic or a combination of both) in different reactor configurations, novel/innovative approaches and hybrid processes adopted to improve the kinetics of hydrate formation and to increase the gas storage capacity. Detailed sections on the ‘self-preservation’ and ‘tuning’ effect in hydrates have been included due to their significance in SNG technology. Process chain of the SNG technology, underlying challenges and measures adopted to deploy the SNG technology for large-scale NG storage applications are included in this review.

Suggested Citation

  • Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:262-285
    DOI: 10.1016/j.apenergy.2018.02.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.
    2. Rossi, Federico & Filipponi, Mirko & Castellani, Beatrice, 2012. "Investigation on a novel reactor for gas hydrate production," Applied Energy, Elsevier, vol. 99(C), pages 167-172.
    3. Gregor Rehder & Robert Eckl & Markus Elfgen & Andrzej Falenty & Rainer Hamann & Nina Kähler & Werner F. Kuhs & Hans Osterkamp & Christoph Windmeier, 2012. "Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis," Energies, MDPI, vol. 5(7), pages 1-25, July.
    4. Wang, Xiaolin & Dennis, Mike & Hou, Liangzhuo, 2014. "Clathrate hydrate technology for cold storage in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 34-51.
    5. Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Li, Gang & Huang, Ning-Sheng & Zhang, Yu, 2013. "Experimental study on gas production from methane hydrate in porous media by SAGD method," Applied Energy, Elsevier, vol. 112(C), pages 1233-1240.
    6. Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2011. "Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane," Energy, Elsevier, vol. 36(3), pages 1394-1403.
    7. Kondo, Wataru & Ohtsuka, Kaoru & Ohmura, Ryo & Takeya, Satoshi & Mori, Yasuhiko H., 2014. "Clathrate-hydrate formation from a hydrocarbon gas mixture: Compositional evolution of formed hydrate during an isobaric semi-batch hydrate-forming operation," Applied Energy, Elsevier, vol. 113(C), pages 864-871.
    8. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    9. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    10. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    11. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    12. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
    13. Kipyoung Kim & Hokeun Kang & Youtaek Kim, 2015. "Risk Assessment for Natural Gas Hydrate Carriers: A Hazard Identification (HAZID) Study," Energies, MDPI, vol. 8(4), pages 1-23, April.
    14. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    15. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    16. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    17. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    3. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    4. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    5. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    6. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    7. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    8. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    10. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    11. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    12. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    13. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    14. Song, Yuan-Mei & Wang, Fei & Guo, Gang & Luo, Sheng-Jun & Guo, Rong-Bo, 2018. "Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nanotubes as promoter," Applied Energy, Elsevier, vol. 224(C), pages 175-183.
    15. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    16. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    17. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    18. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    19. Zhang, Jianbo & Wang, Zhiyuan & Liu, Shun & Zhang, Weiguo & Yu, Jing & Sun, Baojiang, 2019. "Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Anatoliy M. Pavlenko, 2020. "Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates," Energies, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:262-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.