IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921011764.html
   My bibliography  Save this article

Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes

Author

Listed:
  • Li, Xiao-Yan
  • Feng, Jing-Chun
  • Li, Xiao-Sen
  • Wang, Yi
  • Hu, Heng-Qi

Abstract

Gas hydrate found in nature is mainly existed in deposit, such as marine deposit and permafrost. The thermophysical properties of the deposit are largely influenced by the formation features of gas hydrate, thereby affecting the hydrate production. In this manuscript, the experiments of formation and decomposition behavior of gas hydrate in the deposit with different grain sizes (40–60 mesh, 80–120 mesh, 325–400 mesh) and different thermal conductivities (0.926 W/m.K, 28.8 W/m.K, 41.9 W/m.K) were conducted in the small cubic hydrate simulator, and the coupling effect of the heat and mass transport on the hydrate formation and dissociation were researched. It was concluded that the mass transport rate in the deposit dominated the hydrate formation. The formation of gas hydrate was initial at the contact surfacing of gas–water and grew gradually in the gas-rich region, and the hydrate formation amount in the water-rich region was little. In the deposit with the grain size of 80–120 mesh and 325–400 mesh, there was no obvious induction time for the hydrate formation that occurred during gas injection. Be different from the hydrate formation, the heat transfer rate of the deposit restricted chiefly methane hydrate dissociation. With the raise of grain size and thermal conductivity of deposit, methane hydrate decomposition rate enhanced. It’s also found that the formed hydrate acted as cementation in porous medium with the grain size of 80–120 mesh and 325–400 mesh. The heat transfer rate of the deposit would significantly decrease when most of the cementation between the porous medium was disappeared as a result of hydrate dissociation, and the hydrate saturation in sediments at this time was defined as the critical hydrate saturation (50–80% of the initial hydrate saturation). The critical hydrate saturation is meaningful for gas hydrate resource prospecting and the risk assessment of gas hydrate production in actual fields.

Suggested Citation

  • Li, Xiao-Yan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Hu, Heng-Qi, 2022. "Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011764
    DOI: 10.1016/j.apenergy.2021.117852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    2. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    3. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    4. Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2015. "Experimental study on the effective thermal conductivity of hydrate-bearing sediments," Energy, Elsevier, vol. 79(C), pages 203-211.
    5. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    6. Li, Xiao-Yan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Hu, Heng-Qi, 2021. "The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes," Energy, Elsevier, vol. 215(PA).
    7. Li, Xiao-Yan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Hu, Heng-Qi, 2020. "The determining factor of hydrate dissociation rate in the sediments with different water saturations," Energy, Elsevier, vol. 202(C).
    8. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Dawei & Qu, Aoxing & Wang, Zifei & Lv, Xin & Li, Qingping & Leng, Shudong & Xiao, Bo & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Fluid flow-induced fine particle migration and its effects on gas and water production behavior from gas hydrate reservoir," Applied Energy, Elsevier, vol. 331(C).
    2. Zhang, Yuxuan & Zhai, Xiaoqiang & Zhang, Fengyuan & Zhang, Zhongbin & Hooman, Kamel & Zhang, Hai & Wang, Xiaolin, 2023. "A biomimetic red blood cell inspired encapsulation design for advanced hydrate-based carbon capture," Energy, Elsevier, vol. 271(C).
    3. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    4. Liang, Yunhang & Bi, Xueqing & Zhao, Yunlong & Tian, Runnan & Zhao, Peihe & Fang, Wenjing & Liu, Bing, 2024. "Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields," Energy, Elsevier, vol. 286(C).
    5. Li, Xiao-Yan & Wan, Kun & Wang, Yi & Li, Xiao-Sen, 2022. "The double-edged characteristics of the soaking time during hydrate dissociation by periodic depressurization combined with hot water injection," Applied Energy, Elsevier, vol. 325(C).
    6. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    7. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).
    8. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Beckwée, Emile Jules & Houlleberghs, Maarten & Ciocarlan, Radu-George & Chandran, C. Vinod & Radhakrishnan, Sambhu & Hanssens, Lucas & Cool, Pegie & Martens, Johan & Breynaert, Eric & Baron, Gino V. &, 2024. "Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading," Applied Energy, Elsevier, vol. 353(PA).
    10. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    11. Minghang Mao & Kefeng Yan & Xiaosen Li & Zhaoyang Chen & Yi Wang & Jingchun Feng & Chang Chen, 2024. "Review of Heat Transfer Characteristics of Natural Gas Hydrate," Energies, MDPI, vol. 17(3), pages 1-25, February.
    12. Feng, Yu & Qu, Aoxing & Han, Yuze & Shi, Changrui & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Effect of gas hydrate formation and dissociation on porous media structure with clay particles," Applied Energy, Elsevier, vol. 349(C).
    13. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    14. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    15. Li, Xingxun & Wei, Rucheng & Li, Qingping & Pang, Weixin & Chen, Guangjin & Sun, Changyu, 2023. "Application of infrared thermal imaging technique in in-situ temperature field measurement of hydrate-bearing sediment under thermal stimulation," Energy, Elsevier, vol. 265(C).
    16. Wang, Cunning & Li, Xingxun & Liang, Shuang & Li, Qingping & Pang, Weixin & Zhao, Bo & Chen, Guangjin & Sun, Changyu, 2023. "Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle," Energy, Elsevier, vol. 285(C).
    17. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    18. Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Characterization of Memory Effect, Anomalous Self-Preservation and Ice-Hydrate Competition, during Methane-Hydrates Formation and Dissociation in a Lab-Scale Apparatus," Sustainability, MDPI, vol. 14(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    2. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    3. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    4. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    5. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    6. Zhao, Jiafei & Liu, Yulong & Guo, Xianwei & Wei, Rupeng & Yu, Tianbo & Xu, Lei & Sun, Lingjie & Yang, Lei, 2020. "Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization," Applied Energy, Elsevier, vol. 260(C).
    7. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    8. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    10. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    11. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    12. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    13. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    14. Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    16. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    17. Bian, Jiang & Wang, Hongchao & Yang, Kairan & Chen, Junwen & Cao, Xuewen, 2022. "Spatial differences in pressure and heat transfer characteristics of CO2 hydrate with dissociation for geological CO2 storage," Energy, Elsevier, vol. 240(C).
    18. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    19. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    20. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.