IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919317453.html
   My bibliography  Save this article

Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres

Author

Listed:
  • Cui, Gan
  • Wang, Shun
  • Dong, Zengrui
  • Xing, Xiao
  • Shan, Tianxiang
  • Li, Zili

Abstract

The safe storage and transportation of methane hydrate, the in situ combustion of hydrates for deep mining, and the design of high-efficiency burners that directly use methane hydrate as fuel all require research on methane hydrate combustion characteristics. In this paper, the combustion characteristics of methane hydrate spheres in a natural convective flow were investigated, and the effects of the hydrate sphere diameter and the initial center temperature on their combustion characteristics were analyzed. The results demonstrated that the sphere diameter substantially affected the combustion process. At a lower initial center temperature (<−80 °C), methane hydrate spheres with diameters of 2 cm and 2.7 cm completely burned. In contrast, due to self-preservation in the 1.2-cm diameter methane hydrate sphere, the continuous water film on the surface was cooled by the inner low-temperature hydrate. This resulted in the formation of a continuous ice layer, which inhibited further dissociation of the internal hydrate, and the flame was rapidly extinguished. As the initial center temperature increased, the combustion time gradually decreased, and complete combustion of the 1.2-cm methane hydrate sphere was realized. During the combustion of the hydrate spheres, the variation in the diameter obeyed the D2 law, and the combustion rate decreased when the diameter increased or when the initial center temperature decreased.

Suggested Citation

  • Cui, Gan & Wang, Shun & Dong, Zengrui & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317453
    DOI: 10.1016/j.apenergy.2019.114058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Chun-Gang & Yan, Ran & Fu, Juan & Zhang, Shao-Hong & Yan, Ke-Feng & Chen, Zhao-Yang & Xia, Zhi-Ming & Li, Xiao-Sen, 2019. "Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization," Applied Energy, Elsevier, vol. 239(C), pages 57-69.
    2. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    3. Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
    4. Lee, Seungro & Padilla, Rosa & Dunn-Rankin, Derek & Pham, Trinh & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed H2O-laden CH4/air flames," Energy, Elsevier, vol. 93(P1), pages 442-450.
    5. Judith M. Schicks & Erik Spangenberg & Ronny Giese & Bernd Steinhauer & Jens Klump & Manja Luzi, 2011. "New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments," Energies, MDPI, vol. 4(1), pages 1-22, January.
    6. Bi, Yuehong & Guo, Tingwei & Zhu, Tingying & Fan, Shuanshi & Liang, Deqing & Zhang, Liang, 2004. "Influence of volumetric-flow rate in the crystallizer on the gas-hydrate cool-storage process in a new gas-hydrate cool-storage system," Applied Energy, Elsevier, vol. 78(1), pages 111-121, May.
    7. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    8. Gregor Rehder & Robert Eckl & Markus Elfgen & Andrzej Falenty & Rainer Hamann & Nina Kähler & Werner F. Kuhs & Hans Osterkamp & Christoph Windmeier, 2012. "Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis," Energies, MDPI, vol. 5(7), pages 1-25, July.
    9. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    10. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    11. Misyura, S.Y., 2016. "Efficiency of methane hydrate combustion for different types of oxidizer flow," Energy, Elsevier, vol. 103(C), pages 430-439.
    12. Zhao, Jiafei & Song, Yongchen & Lim, Xin-Le & Lam, Wei-Haur, 2017. "Opportunities and challenges of gas hydrate policies with consideration of environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 875-885.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
    4. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    5. Misyura, S.Y., 2020. "Comparing the dissociation kinetics of various gas hydrates during combustion: Assessment of key factors to improve combustion efficiency," Applied Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
    2. Misyura, S.Y., 2020. "Comparing the dissociation kinetics of various gas hydrates during combustion: Assessment of key factors to improve combustion efficiency," Applied Energy, Elsevier, vol. 270(C).
    3. Cui, Gan & Dong, Zengrui & Wang, Shun & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effect of the water on the flame characteristics of methane hydrate combustion," Applied Energy, Elsevier, vol. 259(C).
    4. Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
    5. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    6. Omran, Ahmed & Nesterenko, Nikolay & Valtchev, Valentin, 2022. "Zeolitic ice: A route toward net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Chong, Zheng Rong & Pujar, Girish Anand & Yang, Mingjun & Linga, Praveen, 2016. "Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery," Applied Energy, Elsevier, vol. 177(C), pages 409-421.
    8. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    9. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    10. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    11. Misyura S. Y. & Voytkov I. S. & Morozov V. S. & Manakov A. Y. & Yashutina O. S. & Ildyakov A. V., 2018. "An Experimental Study of Combustion of a Methane Hydrate Layer Using Thermal Imaging and Particle Tracking Velocimetry Methods," Energies, MDPI, vol. 11(12), pages 1-19, December.
    12. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
    13. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    14. Xu, Jiuping & Tang, Min & Liu, Tingting & Fan, Lurong, 2024. "Technological paradigm-based development strategy towards natural gas hydrate technology," Energy, Elsevier, vol. 289(C).
    15. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    16. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    17. Yulia Zaripova & Vladimir Yarkovoi & Mikhail Varfolomeev & Rail Kadyrov & Andrey Stoporev, 2021. "Influence of Water Saturation, Grain Size of Quartz Sand and Hydrate-Former on the Gas Hydrate Formation," Energies, MDPI, vol. 14(5), pages 1-15, February.
    18. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    19. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    20. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.