IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920300933.html
   My bibliography  Save this article

Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis

Author

Listed:
  • Shoeibi, Shahin
  • Rahbar, Nader
  • Abedini Esfahlani, Ahad
  • Kargarsharifabad, Hadi

Abstract

The performance of solar stills is affected by various parameters (e.g. solar radiation, water depth, thermal insulation, and the temperature difference between glass and water). There are two alternatives to increase the temperature difference between glass and water: increasing the water or reducing the glass temperatures. The present study aims to investigate the effect of simultaneous thermoelectric cooling and heating on the performance of a solar still. The experiments were conducted during 8 days in Tehran, Iran (35°41′N, 51°19′E). The setup consisted of a double-slope solar still and a thermoelectric enhancing system that was used to cool the glass cover and heat the water, simultaneously. The cold side of the thermoelectric modules cools a water stream which passes on the glass cover. On the other side (hot side) of the thermoelectric modules, there flows another water stream passing through a helical coil heat exchanger which is located inside the solar still in the water. The obtained results, compared to the passive solar still, indicated that this modification improves the productivity by 2.32 times and generates 76.4% of the efficiency. Moreover, it is observed that the maximum exergy efficiency in the conventional and modified solar stills is about 1.48% and 0.8%, respectively. Also, the economic analysis showed that the price of the produced water for active and passive solar stills were about 0.105 and 0.176 $/L/m2 respectively.

Suggested Citation

  • Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920300933
    DOI: 10.1016/j.apenergy.2020.114581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    2. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    3. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    4. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    5. Nazari, Saeed & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2019. "Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid," Renewable Energy, Elsevier, vol. 135(C), pages 729-744.
    6. Ismail, Basel I., 2009. "Design and performance of a transportable hemispherical solar still," Renewable Energy, Elsevier, vol. 34(1), pages 145-150.
    7. El-Sebaii, A.A., 2011. "On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover," Energy, Elsevier, vol. 36(8), pages 4943-4949.
    8. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    9. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    10. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    11. Elfasakhany, Ashraf, 2016. "Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 399-407.
    12. Mohamad, M. A. & Soliman, S. H. & Abdel-Salam, M. S. & Hussein, H. M. S., 1995. "Experimental and financial investigation of asymmetrical solar stills with different insulation," Applied Energy, Elsevier, vol. 52(2-3), pages 265-271.
    13. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    14. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    15. Madani, A. A. & Zaki, G. M., 1995. "Yield of solar stills with porous basins," Applied Energy, Elsevier, vol. 52(2-3), pages 273-281.
    16. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    17. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    2. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    3. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    4. Almahmoud, Hamad A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Ben Mansour, Ridha & Alkhulaifi, Yousif M., 2021. "Energetic performance analysis of a solar-driven hybrid ejector cooling and humidification-dehumidification desalination system," Energy, Elsevier, vol. 230(C).
    5. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
    6. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    7. Muhammad Amin & Hamdani Umar & Fazri Amir & Suma Fachruri Ginting & Putu Brahmanda Sudarsana & Wayan Nata Septiadi, 2022. "Experimental Study of a Tubular Solar Distillation System with Heat Exchanger Using a Parabolic Trough Collector," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    8. Mohammad Tariq Nasir & Diaa Afaneh & Salah Abdallah, 2022. "Design Modifications for a Thermoelectric Distiller with Feedback Control," Energies, MDPI, vol. 15(24), pages 1-15, December.
    9. Delfani, Fatemeh & Rahbar, Nader & Aghanajafi, Cyrus & Heydari, Ali & KhalesiDoost, Abdollah, 2021. "Utilization of thermoelectric technology in converting waste heat into electrical power required by an impressed current cathodic protection system," Applied Energy, Elsevier, vol. 302(C).
    10. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    11. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    12. Mohammadnia, Ali & Ziapour, Behrooz M. & Sedaghati, Farzad & Rosendahl, Lasse & Rezania, Alireza, 2021. "Fan operating condition effect on performance of self- cooling thermoelectric generator system," Energy, Elsevier, vol. 224(C).
    13. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    2. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    4. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    5. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    6. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    7. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    8. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    9. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    10. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    11. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    12. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    13. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    14. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    15. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    16. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    17. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.
    19. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920300933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.