IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v52y1995i2-3p273-281.html
   My bibliography  Save this article

Yield of solar stills with porous basins

Author

Listed:
  • Madani, A. A.
  • Zaki, G. M.

Abstract

Following a brief review on the recent trends for improving the economy of direct solar distillation, a new simple still is described. In the proposed conceptual design the construction cost is greatly reduced by eliminating the concrete structure for the still's basin and the black lining materials. Instead a site is filled with powdered soot (carbon powder 40-50 [mu]m size) obtained free of charge from oil-fired power plants. The effects of the powder and the basin's insulation layer on the yield from the solar still are examined experimentally. Outdoor testing of a pilot unit in Jeddah, Saudi Arabia (latitude 21° 45'N) shows an average yield of 2·5-4 litres/m2 day using the soot in the still's basin. Removing the basin's insulation reduces the productivity by 13-17%. Economic analysis of the proposed design for a plant of 50 m3/day productivity shows a potable water production cost of US$2·4/m3, which is 66% less than previous estimates.

Suggested Citation

  • Madani, A. A. & Zaki, G. M., 1995. "Yield of solar stills with porous basins," Applied Energy, Elsevier, vol. 52(2-3), pages 273-281.
  • Handle: RePEc:eee:appene:v:52:y:1995:i:2-3:p:273-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(95)00044-S
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    2. Ahmed, M.I. & Hrairi, M. & Ismail, A.F., 2009. "On the characteristics of multistage evacuated solar distillation," Renewable Energy, Elsevier, vol. 34(6), pages 1471-1478.
    3. Jaber, J. O. & Probert, S. D. & Badr, O., 1997. "Water scarcity: A fundamental crisis for Jordan," Applied Energy, Elsevier, vol. 57(2-3), pages 103-127, June.
    4. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    5. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    6. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    7. Rashidi, Saman & Esfahani, Javad Abolfazli & Rashidi, Abbas, 2017. "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1198-1210.
    8. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    9. Abd Elbar, Ayman Refat & Hassan, Hamdy, 2020. "An experimental work on the performance of new integration of photovoltaic panel with solar still in semi-arid climate conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1429-1443.
    10. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:52:y:1995:i:2-3:p:273-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.