IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp537-547.html
   My bibliography  Save this article

Theoretical and experimental investigation on internal reflectors in a single-slope solar still

Author

Listed:
  • Karimi Estahbanati, M.R.
  • Ahsan, Amimul
  • Feilizadeh, Mehrzad
  • Jafarpur, Khosrow
  • Ashrafmansouri, Seyedeh-Saba
  • Feilizadeh, Mansoor

Abstract

This study investigated the effect of an internal reflector (IR) on the productivity of a single-slope solar still (during the summer and winter) experimentally and theoretically. A mathematical model was presented which took into account the effect of all walls (north, south, west and east) of the still on the amount of received solar radiation to brine, and the model was validated with the experimental data. The model can calculate the yield of the still with and without IR on various walls. The results show that the simultaneous use of IR on front and side walls enhances the still’s efficiency by 18%. However, installation of an IR on the back wall can increase the annual efficiency by 22%. The installation of IRs on all walls in comparison to a still without IR can increase the distillate production at winter, summer and the entire year by 65%, 22% and 34%, respectively. Furthermore, the effect of cloud factor on the installation of IRs on all walls was examined, and the results indicate that the increasing the cloud factor decreases the influence of IRs significantly.

Suggested Citation

  • Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:537-547
    DOI: 10.1016/j.apenergy.2015.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    2. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    3. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    4. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    5. Al-Karaghouli, A. A. & Alnaser, W. E., 2004. "Performances of single and double basin solar-stills," Applied Energy, Elsevier, vol. 78(3), pages 347-354, July.
    6. Al-Karaghouli, A. A. & Alnaser, W. E., 2004. "Experimental comparative study of the performances of single and double basin solar-stills," Applied Energy, Elsevier, vol. 77(3), pages 317-325, March.
    7. Dutt, D. K. & Kumar, Ashok & Anand, J. D. & Tiwari, G. N., 1989. "Performance of a double-basin solar still in the presence of dye," Applied Energy, Elsevier, vol. 32(3), pages 207-223.
    8. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    9. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    10. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    11. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
    12. Arunkumar, T. & Jayaprakash, R. & Ahsan, Amimul & Denkenberger, D. & Okundamiya, M.S., 2013. "Effect of water and air flow on concentric tubular solar water desalting system," Applied Energy, Elsevier, vol. 103(C), pages 109-115.
    13. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    14. Dev, Rahul & Abdul-Wahab, Sabah A. & Tiwari, G.N., 2011. "Performance study of the inverted absorber solar still with water depth and total dissolved solid," Applied Energy, Elsevier, vol. 88(1), pages 252-264, January.
    15. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    16. El-Swify, M.E. & Metias, M.Z., 2002. "Performance of double exposure solar still," Renewable Energy, Elsevier, vol. 26(4), pages 531-547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    2. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    3. Ewelina Radomska & Łukasz Mika & Karol Sztekler & Wojciech Kalawa & Łukasz Lis & Kinga Pielichowska & Magdalena Szumera & Paweł Rutkowski, 2023. "Experimental and Theoretical Investigation of Single-Slope Passive Solar Still with Phase-Change Materials," Energies, MDPI, vol. 16(3), pages 1-29, January.
    4. Dhivagar, Ramasamy & Shoeibi, Shahin & Parsa, Seyed Masoud & Hoseinzadeh, Siamak & Kargarsharifabad, Hadi & Khiadani, Mehdi, 2023. "Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis," Renewable Energy, Elsevier, vol. 206(C), pages 879-889.
    5. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    6. Sujit Kumar & Om Prakash, 2022. "Improving the Single-Slope Solar Still Performance Using Solar Air Heater with Phase Change Materials," Energies, MDPI, vol. 15(21), pages 1-15, October.
    7. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    8. Feilizadeh, Mansoor & Estahbanati, M.R. Karimi & Khorram, Mohammad & Rahimpour, Mohammad Reza, 2019. "Experimental investigation of an active thermosyphon solar still with enhanced condenser," Renewable Energy, Elsevier, vol. 143(C), pages 328-334.
    9. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    10. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    11. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    12. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    13. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    14. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    15. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    17. Lee, Ga-Ram & Park, Chang-Dae & Lim, Hyuneui & Cho, Sung-Hoon & Choi, Seok-Min & Lim, Byung-Ju, 2023. "Performance enhancement of a diffusion-type solar still: Wettability and flowability of condensation surface," Renewable Energy, Elsevier, vol. 209(C), pages 277-285.
    18. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    2. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    3. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    4. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    5. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    6. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    8. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    9. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    10. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    11. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    12. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.
    13. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    14. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    15. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    16. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    17. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    18. Mahkamov, Khamid & Orda, Eugene & Belgasim, Basim & Makhkamova, Irina, 2015. "A novel small dynamic solar thermal desalination plant with a fluid piston converter," Applied Energy, Elsevier, vol. 156(C), pages 715-726.
    19. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    20. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:537-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.