IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp227-244.html
   My bibliography  Save this article

Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation

Author

Listed:
  • Shoeibi, Shahin
  • Rahbar, Nader
  • Esfahlani, Ahad Abedini
  • Kargarsharifabad, Hadi

Abstract

The impact of using air and water cooling glass in the double slope solar still have been performed numerically and experimentally. The thermoelectric modules cold side cools a water flow which passes on the glass cover in the water-cooled solar still. On the other hand, the wind velocity was used to cooling the glass cover in the air-cooled solar still. The convection heat transfer coefficient is accounted as boundary conditions of the glass surface. Results show that the good agreement was obtained between numerical model and experimental data. The water productivity in water-cooled solar still was 81.1% more than an air-cooled solar still. Moreover, the effects of glass cover thickness, velocity and temperature of the water cooling glass on performance of a water-cooled solar still are performed. The output results, compared to water-cooled solar still, showed that this modification of water-cooled solar still increases the water productivity by 21.53%. Also, the cost analysis indicated that the cost of produced water for water-cooled and air-cooled solar still were about 0.243 $/L and 0.277 $/L, respectively. Based on the results, the CO2 mitigation of air-cooled, water-cooled and modified water-cooled solar still were about 7.75, 13.09 and 16.27 tons, respectively. The enviroeconomic and exergoenviroeconomic parameters in the modified water-cooled solar still were improved by 24.3% and 632.1%, respectively, compared to the water-cooled ones.

Suggested Citation

  • Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:227-244
    DOI: 10.1016/j.renene.2021.02.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    2. Ismail, Basel I., 2009. "Design and performance of a transportable hemispherical solar still," Renewable Energy, Elsevier, vol. 34(1), pages 145-150.
    3. Xiao, Lan & Guo, Feng-Wei & Wu, Shuang-Ying & Chen, Zhi-Li, 2020. "A comprehensive simulation on optical and thermal performance of a cylindrical cavity receiver in a parabolic dish collector system," Renewable Energy, Elsevier, vol. 145(C), pages 878-892.
    4. Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
    5. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    6. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    7. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
    8. Abu-Hijleh, Bassam A/K & Mousa, Hasan A., 1997. "Water film cooling over the glass cover of a solar still including evaporation effects," Energy, Elsevier, vol. 22(1), pages 43-48.
    9. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    10. Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
    11. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    12. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    2. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    3. Delfani, Fatemeh & Rahbar, Nader & Aghanajafi, Cyrus & Heydari, Ali & KhalesiDoost, Abdollah, 2021. "Utilization of thermoelectric technology in converting waste heat into electrical power required by an impressed current cathodic protection system," Applied Energy, Elsevier, vol. 302(C).
    4. Malvika, A. & Arunachala, U.C. & Varun, K., 2022. "Sustainable passive cooling strategy for photovoltaic module using burlap fabric-gravity assisted flow: A comparative Energy, exergy, economic, and enviroeconomic analysis," Applied Energy, Elsevier, vol. 326(C).
    5. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Dhivagar, Ramasamy & Shoeibi, Shahin & Parsa, Seyed Masoud & Hoseinzadeh, Siamak & Kargarsharifabad, Hadi & Khiadani, Mehdi, 2023. "Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis," Renewable Energy, Elsevier, vol. 206(C), pages 879-889.
    7. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    3. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    4. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    5. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    6. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    7. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    8. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    9. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    10. Durkaieswaran, P. & Murugavel, K. Kalidasa, 2015. "Various special designs of single basin passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1048-1060.
    11. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    12. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    13. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    14. Kabeel, A.E. & Attia, Mohammed El Hadi & Zayed, Mohamed E. & Abdelgaied, Mohamed & Abdullah, A.S. & El-Maghlany, Wael M., 2022. "Performance enhancement of a v-corrugated basin hemispherical solar distiller combined with reversed solar collector: An experimental approach," Renewable Energy, Elsevier, vol. 190(C), pages 330-337.
    15. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    16. Jamil, Furqan & Hassan, Faisal & Shoeibi, Shahin & Khiadani, Mehdi, 2023. "Application of advanced energy storage materials in direct solar desalination: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    17. Mohaisen, H.S. & Esfahani, J.A. & Ayani, M.B., 2021. "Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study," Renewable Energy, Elsevier, vol. 168(C), pages 170-180.
    18. Pandey, Nagendra & Naresh, Y., 2024. "A comprehensive 4E (energy, exergy, economic, environmental) analysis of novel pyramid solar still coupled with pulsating heat pipe: An experimental study," Renewable Energy, Elsevier, vol. 225(C).
    19. Djamal Eddine Benhadji Serradj & Timothy Anderson & Roy Nates, 2022. "The Effect of Geometry on the Yield of Fresh Water from Single Slope Solar Stills," Energies, MDPI, vol. 15(19), pages 1-18, October.
    20. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:227-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.