IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp322-331.html
   My bibliography  Save this article

A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion

Author

Listed:
  • E, Jiaqiang
  • Liu, Teng
  • Yang, Wenming
  • Deng, Yuanwang
  • Gong, Jinke

Abstract

A new developed four-component biodiesel combustion skeletal mechanism comprising methyl decenoate, methyl-5-decenoate, n-decane and methyl linoleate is presented in this work, which could predict soot formation trends with varying fatty acid methyl esters proportion. It was established based on a detailed n-heptane mechanism, HACA-mechanism and our previously developed four-component biodiesel combustion skeletal mechanism without soot formation mechanism. This new developed mechanism consists of 134 species and 475 reactions. In order to validate the feasibility of this new skeletal mechanism, ignition delay testing, constant volume combustion chamber experiment testing and diesel engine experiment testing were performed. The result indicates that it is suitable to predict ignition behavior, flame lift-off length, soot shape and distribution, cylinder pressures, heat release rate and NOx emission trends of biodiesel with varying fatty acid methyl esters proportion.

Suggested Citation

  • E, Jiaqiang & Liu, Teng & Yang, Wenming & Deng, Yuanwang & Gong, Jinke, 2016. "A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 181(C), pages 322-331.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:322-331
    DOI: 10.1016/j.apenergy.2016.08.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Hui & Yang, Wenming & Li, Jing & Maghbouli, Amin & Chua, Kian Jon & Chou, Siaw Kiang, 2014. "A numerical modeling on the emission characteristics of a diesel engine fueled by diesel and biodiesel blend fuels," Applied Energy, Elsevier, vol. 130(C), pages 458-465.
    2. Agarwal, Deepak & Sinha, Shailendra & Agarwal, Avinash Kumar, 2006. "Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine," Renewable Energy, Elsevier, vol. 31(14), pages 2356-2369.
    3. An, H. & Yang, W.M. & Maghbouli, A. & Chou, S.K. & Chua, K.J., 2013. "Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling," Applied Energy, Elsevier, vol. 102(C), pages 647-656.
    4. An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
    5. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    6. Zhang, Kesong & Liang, Zheng & Wang, Jianxin & Wang, Zhiming, 2013. "Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism," Applied Energy, Elsevier, vol. 105(C), pages 223-228.
    7. Mohan, Balaji & Yang, Wenming & Yu, Wenbin, 2014. "Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters," Applied Energy, Elsevier, vol. 129(C), pages 123-134.
    8. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    9. Liu, Teng & E., Jiaqiang & Yang, Wenming & Hui, An & Cai, Hao, 2016. "Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 162(C), pages 278-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shaohua & Lao, Chung Ting & Akroyd, Jethro & Mosbach, Sebastian & Yang, Wenming & Kraft, Markus, 2020. "A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines," Applied Energy, Elsevier, vol. 258(C).
    2. Chen, Jingwei & E, Jiaqiang & Kang, Siyi & Zhao, Xiaohuan & Zhu, Hao & Deng, Yuanwang & Peng, Qingguo & Zhang, Zhiqing, 2019. "Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process," Energy, Elsevier, vol. 187(C).
    3. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    4. Mathimani, Thangavel & Senthil Kumar, Tamilkolundu & Chandrasekar, Murugesan & Uma, Lakshmanan & Prabaharan, Dharmar, 2017. "Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel," Renewable Energy, Elsevier, vol. 105(C), pages 637-646.
    5. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    6. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    7. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    8. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    9. Lin, Kuang C. & Dahiya, Anurag & Tao, Hairong & Kao, Fan-Hsu, 2022. "Combustion mechanism and CFD investigation of methyl isobutanoate as a component of biodiesel surrogate," Energy, Elsevier, vol. 249(C).
    10. Rassoulinejad-Mousavi, Seyed Moein & Mao, Yijin & Zhang, Yuwen, 2018. "Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel," Renewable Energy, Elsevier, vol. 128(PA), pages 313-323.
    11. Ma, Yinjie & Huang, Ronghua & Fu, Jianqin & Huang, Sheng & Liu, Jingping, 2018. "Development of a diesel/biodiesel/alcohol (up to n-pentanol) combined mechanism based on reaction pathways analysis methodology," Applied Energy, Elsevier, vol. 225(C), pages 835-847.
    12. Yu Wei & Xiaohui Zhang & Shan Qing & Hua Wang, 2024. "Reaction Mechanism of Pyrolysis and Combustion of Methyl Oleate: A ReaxFF-MD Analysis," Energies, MDPI, vol. 17(14), pages 1-14, July.
    13. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Zhao, Feiyang & Yang, Wenming & Yu, Wenbin & Li, Han & Sim, Yu Yun & Liu, Teng & Tay, Kun Lin, 2018. "Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels," Applied Energy, Elsevier, vol. 211(C), pages 187-193.
    15. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    16. Li, Yuqiang & Meng, Lei & Nithyanandan, Karthik & Lee, Timothy H. & Lin, Yilu & Lee, Chia-fon F. & Liao, Shengming, 2017. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends," Energy, Elsevier, vol. 121(C), pages 43-54.
    17. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    18. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    19. Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
    20. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.
    21. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    22. Ismail, Tamer M. & Lu, Ding & Ramzy, Khaled & Abd El-Salam, M. & Yu, Guangsuo & Elkady, M.A., 2019. "Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt," Energy, Elsevier, vol. 189(C).
    23. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    24. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
    25. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.
    2. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    3. Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
    4. Mohan, Balaji & Yang, Wenming & Yu, Wenbin & Tay, Kun Lin & Chou, Siaw Kiang, 2015. "Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine," Applied Energy, Elsevier, vol. 160(C), pages 737-745.
    5. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    6. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    7. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    8. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    9. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    10. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    11. An, H. & Yang, W.M. & Li, J., 2015. "Effects of ethanol addition on biodiesel combustion: A modeling study," Applied Energy, Elsevier, vol. 143(C), pages 176-188.
    12. Awad, Sary & Loubar, Khaled & Tazerout, Mohand, 2014. "Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine," Energy, Elsevier, vol. 69(C), pages 826-836.
    13. Bari, S. & Saad, Idris, 2015. "Optimization of vane numbers through simulation and experiment, and investigation of the effect on the performance and emissions of a CI (compression ignition) engine run with biodiesel," Energy, Elsevier, vol. 79(C), pages 248-263.
    14. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    15. Zhao, Feiyang & Yang, Wenming & Yu, Wenbin & Li, Han & Sim, Yu Yun & Liu, Teng & Tay, Kun Lin, 2018. "Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels," Applied Energy, Elsevier, vol. 211(C), pages 187-193.
    16. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    17. Liu, Teng & E., Jiaqiang & Yang, Wenming & Hui, An & Cai, Hao, 2016. "Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 162(C), pages 278-288.
    18. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    19. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    20. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:322-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.