IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp294-301.html
   My bibliography  Save this article

Visualizations of combustion and fuel/air mixture formation processes in a single cylinder engine fueled with DME

Author

Listed:
  • Jeon, Joonho
  • Kwon, Sang Il
  • Park, Yong Hee
  • Oh, Yunjung
  • Park, Sungwook

Abstract

The purpose of this study is to investigate the effects of various engine conditions on the combustion, flame temperature and emission characteristics of dimethyl ether (DME) fuel compared with ultra-low sulfur diesel (ULSD) fuel through experimental and numerical analyzes. In order to analyze the temperature distribution, the KIVA-3V code and an optical HSDI diesel engine equipped with a visualization system were employed. The numerical validation was conducted with the experimental results from a DME-fueled compression ignition engine. In addition, measurement of the flame temperature from images captured during the combustion processes was performed using AVL-ThermoVision software.

Suggested Citation

  • Jeon, Joonho & Kwon, Sang Il & Park, Yong Hee & Oh, Yunjung & Park, Sungwook, 2014. "Visualizations of combustion and fuel/air mixture formation processes in a single cylinder engine fueled with DME," Applied Energy, Elsevier, vol. 113(C), pages 294-301.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:294-301
    DOI: 10.1016/j.apenergy.2013.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohan, Balaji & Yang, Wenming & Yu, Wenbin & Tay, Kun Lin, 2017. "Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel," Applied Energy, Elsevier, vol. 185(P2), pages 1403-1410.
    2. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    3. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    4. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    5. Jiotode, Yeshudas & Agarwal, Avinash Kumar, 2017. "Endoscopic combustion characterization of Jatropha biodiesel in a compression ignition engine," Energy, Elsevier, vol. 119(C), pages 845-851.
    6. Kang, Yinhu & Wang, Quanhai & Lu, Xiaofeng & Wan, Hu & Ji, Xuanyu & Wang, Hu & Guo, Qiang & Yan, Jin & Zhou, Jinliang, 2015. "Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame," Applied Energy, Elsevier, vol. 149(C), pages 204-224.
    7. Inmo Youn & Joonho Jeon, 2022. "Combustion Performance and Low NOx Emissions of a Dimethyl Ether Compression-Ignition Engine at High Injection Pressure and High Exhaust Gas Recirculation Rate," Energies, MDPI, vol. 15(5), pages 1-11, March.
    8. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:294-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.