IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2692-d550214.html
   My bibliography  Save this article

A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage

Author

Listed:
  • Yongqi Zhao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China
    Current address: 266 Xincun West Road, Zhangdian District, Zibo 255049, China.)

  • Jiajia Chen

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China
    Current address: 266 Xincun West Road, Zhangdian District, Zibo 255049, China.)

Abstract

High renewable energy integrated standalone microgrid requires greater ramping capabilities from other dispatchable resources to compensate for effects of the intermittent and variability of the renewable energy available in the system. To address this, a wind-solar-thermal-hydro-coupled multi-source standalone microgrid (WSTHcMSSM) considering demand response and pumped hydro storage is proposed to maximize the operating profit and get the optimal solution of the multi-source generation system by taking advantage of multi-resource complementarity. In WSTHcMSSM, we present a conditional value-at-credibility (CVaC)-based quantitative risk-averse model for uncertain wind and solar power by thoroughly examining the randomness and fuzziness characteristics. Additionally, the most severe issues caused by wind and solar power fluctuation happen during the peak load, and this paper proposes a load partitioning method to get the time-of-use (TOU) in demand response for peak load shaving. A case study is conducted for the validation of the proposed method. It is found from the study case that the CVaC can well evaluate the uncertainty in WSTHcMSSM with wind and solar integration. Additionally, the WSTHcMSSM can efficiently explore the potential flexibility in multi-source complementarity for promoting the penetration of renewable energy.

Suggested Citation

  • Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2692-:d:550214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yangyang & Shen, Zhongqi & Tang, Xiaowei & Lian, Hongbo & Li, Jiarui & Gong, Jinxia, 2019. "Worst-case conditional value-at-risk based bidding strategy for wind-hydro hybrid systems under probability distribution uncertainties," Applied Energy, Elsevier, vol. 256(C).
    2. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    3. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    4. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    5. Akhtar Hussain & Hak-Man Kim, 2020. "Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
    6. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    7. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
    8. Aleixandre-Tudó, José Luis & Castelló-Cogollos, Lourdes & Aleixandre, José Luis & Aleixandre-Benavent, Rafael, 2019. "Renewable energies: Worldwide trends in research, funding and international collaboration," Renewable Energy, Elsevier, vol. 139(C), pages 268-278.
    9. Unni, Arjun C. & Ongsakul, Weerakorn & Madhu M., Nimal, 2020. "Fuzzy-based novel risk and reward definition applied for optimal generation-mix estimation," Renewable Energy, Elsevier, vol. 148(C), pages 665-673.
    10. Roberto Felipe Andrade Menezes & Guilherme Delgado Soriano & Ronaldo Ribeiro Barbosa de Aquino, 2021. "Locational Marginal Pricing and Daily Operation Scheduling of a Hydro-Thermal-Wind-Photovoltaic Power System Using BESS to Reduce Wind Power Curtailment," Energies, MDPI, vol. 14(5), pages 1-22, March.
    11. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    12. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    13. Li, Y.Z. & Li, K.C. & Wang, P. & Liu, Y. & Lin, X.N. & Gooi, H.B. & Li, G.F. & Cai, D.L. & Luo, Y., 2017. "Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach," Energy, Elsevier, vol. 126(C), pages 810-820.
    14. Joro, Tarja & Na, Paul, 2006. "Portfolio performance evaluation in a mean-variance-skewness framework," European Journal of Operational Research, Elsevier, vol. 175(1), pages 446-461, November.
    15. Yuichiro Yoshida & Hooman Farzaneh, 2020. "Optimal Design of a Stand-Alone Residential Hybrid Microgrid System for Enhancing Renewable Energy Deployment in Japan," Energies, MDPI, vol. 13(7), pages 1-18, April.
    16. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    17. Madhusudhan Pandey & Dietmar Winkler & Roshan Sharma & Bernt Lie, 2021. "Using MPC to Balance Intermittent Wind and Solar Power with Hydro Power in Microgrids," Energies, MDPI, vol. 14(4), pages 1-28, February.
    18. Simonelli, Maria Rosaria, 2005. "Indeterminacy in portfolio selection," European Journal of Operational Research, Elsevier, vol. 163(1), pages 170-176, May.
    19. Chen, J.J. & Qi, B.X. & Peng, K. & Li, Y. & Zhao, Y.L., 2020. "Conditional value-at-credibility for random fuzzy wind power in demand response integrated multi-period economic emission dispatch," Applied Energy, Elsevier, vol. 261(C).
    20. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
    21. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    22. Yang Liu & Yanli Ye & Xianbang Chen & Huaqiang Li & Yuan Huang, 2020. "Robust Day-Ahead Dispatch for Integrated Power-Heat-Gas Microgrid considering Wind Power Uncertainty," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    2. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).
    3. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    4. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    5. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    6. Lin, Zhenjia & Chen, Haoyong & Wu, Qiuwei & Li, Weiwei & Li, Mengshi & Ji, Tianyao, 2020. "Mean-tracking model based stochastic economic dispatch for power systems with high penetration of wind power," Energy, Elsevier, vol. 193(C).
    7. Zhang, M.Y. & Chen, J.J. & Yang, Z.J. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power," Energy, Elsevier, vol. 237(C).
    8. Haoling Min & Pinkun He & Chunlai Li & Libin Yang & Feng Xiao, 2024. "The Temporal and Spatial Characteristics of Wind–Photovoltaic–Hydro Hybrid Power Output Based on a Cloud Model and Copula Function," Energies, MDPI, vol. 17(5), pages 1-13, February.
    9. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    10. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    11. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    12. Jia Lu & Jiaqi Zhao & Zheng Zhang & Yaxin Liu & Yang Xu & Tao Wang & Yuqi Yang, 2024. "Short-Term Optimal Operation Method for Hydro–Wind–Thermal Systems Considering Wind Power Uncertainty," Energies, MDPI, vol. 17(20), pages 1-18, October.
    13. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    14. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    15. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    16. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    17. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    18. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    19. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2692-:d:550214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.