IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v127y2014icp55-63.html
   My bibliography  Save this article

Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas

Author

Listed:
  • Waller, Michael G.
  • Williams, Eric D.
  • Matteson, Schuyler W.
  • Trabold, Thomas A.

Abstract

Lower prices and increased supply of natural gas from hydraulic fracturing could lead to widespread use of natural gas in transportation. There are three primary ways that natural gas could be used in personal vehicles: compressed natural gas (CNG) in a combustion engine, as a source of hydrogen for a fuel cell electric vehicle (FCEV), and to generate electricity for a battery electric vehicle (BEV). In this work, we compare these three paths by analyzing their current and theoretical maximum well-to-wheels (WTW) exergy efficiencies. Each pathway begins with the extraction of natural gas and ends with delivery of work to the vehicle’s wheels. The best current and theoretical maximum well-to-wheels exergy efficiencies for CNG, FCEV, and BEV pathways are found to be 31%/63%, 25%/87% and 44%/84% respectively. The largest exergy destruction for the CNG pathway occurs within the vehicle’s internal combustion engine (ICE) plant, which has a best current efficiency of 35%. For the FCEV pathway the main current sources of exergy destruction are the reforming stage and within the fuel cell engine plant, with best current efficiencies of 69% and 50% respectively. For the BEV pathway, the largest exergetic loss occurs during the conversion from natural gas to electricity at a combined cycle power plant, with a best current efficiency of 59%. While the theoretical maximum succeeds in identifying process steps that limit efficiency, it does not inform how much progress could be made to improve efficiency with what effort.

Suggested Citation

  • Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
  • Handle: RePEc:eee:appene:v:127:y:2014:i:c:p:55-63
    DOI: 10.1016/j.apenergy.2014.03.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    2. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    3. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    4. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    5. Hajjaji, Noureddine & Pons, Marie-Noëlle & Houas, Ammar & Renaudin, Viviane, 2012. "Exergy analysis: An efficient tool for understanding and improving hydrogen production via the steam methane reforming process," Energy Policy, Elsevier, vol. 42(C), pages 392-399.
    6. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    7. Lambert, Jean & Sorin, Mikhail & Paris, Jean, 1997. "Analysis of oxygen-enriched combustion for steam methane reforming (SMR)," Energy, Elsevier, vol. 22(8), pages 817-825.
    8. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Shaobo & Chen, Qiulin & Shu, Minglei & Tian, Guohong & Liao, Baoliang & Lv, Chengju & Li, Meng & Lan, Xin & Cheng, Yong, 2020. "Influence of operation management on fuel consumption of coach fleet," Energy, Elsevier, vol. 203(C).
    2. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    3. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    4. Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
    5. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    6. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    7. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    8. Li, Mengyu & Zhang, Xiongwen & Li, Guojun, 2016. "A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis," Energy, Elsevier, vol. 94(C), pages 693-704.
    9. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    10. Siddig, Khalid & Grethe, Harald, 2014. "No more gas from Egypt? Modeling offshore discoveries and import uncertainty of natural gas in Israel," Applied Energy, Elsevier, vol. 136(C), pages 312-324.
    11. Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
    12. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    13. Kayal, Sibnath & Sun, Baichuan & Chakraborty, Anutosh, 2015. "Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)," Energy, Elsevier, vol. 91(C), pages 772-781.
    14. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    2. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    4. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
    5. Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
    6. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
    7. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    8. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
    9. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    10. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    11. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    12. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    13. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    14. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    15. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
    16. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    17. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.
    18. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    19. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:127:y:2014:i:c:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.