IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp884-896.html
   My bibliography  Save this article

A life-cycle perspective on automotive fuel cells

Author

Listed:
  • Simons, Andrew
  • Bauer, Christian

Abstract

The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts.

Suggested Citation

  • Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:884-896
    DOI: 10.1016/j.apenergy.2015.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
    2. Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
    3. Wagner, U. & Eckl, R. & Tzscheutschler, P., 2006. "Energetic life cycle assessment of fuel cell powertrain systems and alternative fuels in Germany," Energy, Elsevier, vol. 31(14), pages 3062-3075.
    4. Gao, Y. & Sun, G.Q. & Wang, S.L. & Zhu, S., 2010. "Carbon nanotubes based gas diffusion layers in direct methanol fuel cells," Energy, Elsevier, vol. 35(3), pages 1455-1459.
    5. Schäfer, Andreas & Heywood, John B. & Weiss, Malcolm A., 2006. "Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment," Energy, Elsevier, vol. 31(12), pages 2064-2087.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    2. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    3. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    4. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    5. Chaube, Anshuman & Chapman, Andrew & Minami, Akari & Stubbins, James & Huff, Kathryn D., 2021. "The role of current and emerging technologies in meeting Japan’s mid- to long-term carbon reduction goals," Applied Energy, Elsevier, vol. 304(C).
    6. Cox, Brian L. & Mutel, Christopher L., 2018. "The environmental and cost performance of current and future motorcycles," Applied Energy, Elsevier, vol. 212(C), pages 1013-1024.
    7. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Robin Smit & Eckard Helmers & Michael Schwingshackl & Martin Opetnik & Daniel Kennedy, 2024. "Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)," Sustainability, MDPI, vol. 16(2), pages 1-38, January.
    9. Yuan, Yi & Chen, Li & Lyu, Xingbao & Ning, Wenjing & Liu, Wenqi & Tao, Wen-Quan, 2024. "Modeling and optimization of a residential PEMFC-based CHP system under different operating modes," Applied Energy, Elsevier, vol. 353(PA).
    10. Salvatore Martelli & Valerio Martini & Francesco Mocera & Aurelio Soma’, 2024. "Life Cycle Assessment Comparison of Orchard Tractors Powered by Diesel and Hydrogen Fuel Cell," Energies, MDPI, vol. 17(18), pages 1-29, September.
    11. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    12. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    13. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    14. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    15. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    16. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    17. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    18. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    19. Liu, Yongfeng & Fan, Lei & Pei, Pucheng & Yao, Shengzhuo & Wang, Fang, 2018. "Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 213(C), pages 573-584.
    20. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
    21. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    22. Aleksandar Lozanovski & Nicole Whitehouse & Nathanael Ko & Simon Whitehouse, 2018. "Sustainability Assessment of Fuel Cell Buses in Public Transport," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    23. Yisong Chen & Xu Hu & Jiahui Liu, 2019. "Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes," Energies, MDPI, vol. 12(15), pages 1-24, August.
    24. Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
    2. Kaname Naganuma & Yuhei Sakane, 2023. "Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles," Energies, MDPI, vol. 16(20), pages 1-11, October.
    3. Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
    4. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    5. Annika Tampe & Kristina Höse & Uwe Götze, 2023. "Sustainability-Oriented Assessment of Fuel Cells—A Literature Review," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    6. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    7. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    8. Shafayat Rashid & Emanuele Pagone, 2023. "Cradle-to-Grave Lifecycle Environmental Assessment of Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    9. Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
    10. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    11. Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
    12. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    13. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    14. Seyed Amir H. Zahabi & Luis Miranda-Moreno & Zachary Patterson & Philippe Barla, 2017. "Impacts of built environment and emerging green technologies on daily transportation greenhouse gas emissions in Quebec cities: a disaggregate modeling approach," Transportation, Springer, vol. 44(1), pages 159-180, January.
    15. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    16. Christian Flachsland & Emily McGlynn & Jan Minx, "undated". "CITIES: Car Industry, Road Transport and an International Emission Trading Scheme – Policy Options," Reports 1, Department of Climate Change Economics, TU Berlin.
    17. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    18. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    19. Kühne, Reinhart, 2010. "Electric buses – An energy efficient urban transportation means," Energy, Elsevier, vol. 35(12), pages 4510-4513.
    20. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:884-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.