IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp453-461.html
   My bibliography  Save this article

A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

Author

Listed:
  • Rose, Lars
  • Hussain, Mohammed
  • Ahmed, Syed
  • Malek, Kourosh
  • Costanzo, Robert
  • Kjeang, Erik

Abstract

Consumers and organizations worldwide are searching for low-carbon alternatives to conventional gasoline and diesel vehicles to reduce greenhouse gas (GHG) emissions and their impact on the environment. A comprehensive technique used to estimate overall cost and environmental impact of vehicles is known as life cycle assessment (LCA). In this article, a comparative LCA of diesel and compressed natural gas (CNG) powered heavy duty refuse collection vehicles (RCVs) is conducted. The analysis utilizes real-time operational data obtained from the City of Surrey in British Columbia, Canada. The impact of the two alternative vehicles is assessed from various points in their life. No net gain in energy use is found when a diesel powered RCV is replaced by a CNG powered RCV. However, significant reductions (approximately 24% CO2-equivalent) in GHG and criteria air contaminant (CAC) emissions are obtained. Moreover, fuel cost estimations based on 2011 price levels and a 5-year lifetime for both RCVs reveal that considerable cost savings may be achieved by switching to CNG vehicles. Thus, CNG RCVs are not only favorable in terms of reduced climate change impact but also cost effective compared to conventional diesel RCVs, and provide a viable and realistic near-term strategy for cities and municipalities to reduce GHG emissions.

Suggested Citation

  • Rose, Lars & Hussain, Mohammed & Ahmed, Syed & Malek, Kourosh & Costanzo, Robert & Kjeang, Erik, 2013. "A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city," Energy Policy, Elsevier, vol. 52(C), pages 453-461.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:453-461
    DOI: 10.1016/j.enpol.2012.09.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cezar Mihălcescu & Beatrice Sion & Alexandra Mărginean, 2011. "Online Promotion Of Tourism In Prague," Romanian Economic Business Review, Romanian-American University, vol. 6(4), pages 7-17, december.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brito, Thiago Luis Felipe & Moutinho dos Santos, Edmilson & Galbieri, Rodrigo & Costa, Hirdan Katarina de Medeiros, 2017. "Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 502-508.
    2. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    4. Wong, Alfred, 2017. "Some less-discussed externalities of contemporary electric vehicle mania in Canada," Energy, Elsevier, vol. 120(C), pages 1025-1033.
    5. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    6. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    7. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    8. Pérez, Javier & de Andrés, Juan Manuel & Borge, Rafael & de la Paz, David & Lumbreras, Julio & Rodríguez, Encarnación, 2019. "Vehicle fleet characterization study in the city of Madrid and its application as a support tool in urban transport and air quality policy development," Transport Policy, Elsevier, vol. 74(C), pages 114-126.
    9. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    10. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
    11. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    12. García-Mariaca, Alexander & Llera-Sastresa, Eva & Moreno, Francisco, 2024. "CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective," Energy, Elsevier, vol. 292(C).
    13. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    14. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    15. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirre, Elizabeth & Mahr, Dominik & Grewal, Dhruv & de Ruyter, Ko & Wetzels, Martin, 2015. "Unraveling the Personalization Paradox: The Effect of Information Collection and Trust-Building Strategies on Online Advertisement Effectiveness," Journal of Retailing, Elsevier, vol. 91(1), pages 34-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:453-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.