IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5808-d1431064.html
   My bibliography  Save this article

Stochastic Optimal Operation of SOP-Assisted Active Distribution Networks with High Penetration of Renewable Energy Sources

Author

Listed:
  • Hongtao Li

    (State Grid Beijing Electric Power Research Institute, Beijing 100075, China
    These authors contributed equally to this work.)

  • Zijin Li

    (State Grid Beijing Electric Power Research Institute, Beijing 100075, China
    These authors contributed equally to this work.)

  • Bo Wang

    (State Grid Beijing Electric Power Research Institute, Beijing 100075, China
    These authors contributed equally to this work.)

  • Kai Sun

    (State Key Laboratory of Power System Operation and Control, Tsinghua University, Beijing 100084, China
    Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

This paper introduces a mixed-integer convex model for optimizing the scheduling of soft open points (SOPs) integrated with energy storage (ES) in active distribution networks (ADNs) with high proportions of photovoltaic sources, designed to ensure zero risk of constraint violations. A stochastic optimization model for ADNs is proposed to maximize the benefits of SOPs while simultaneously minimizing system power losses, SOP power losses, voltage deviations, PV power curtailment, battery energy storage system (BESS) operation cost, and utility power purchase. Uncertainties in PV generation and load demand are considered by Monte Carlo simulation and k-means technologies. Finally, simulation cases from a 21-bus distribution network show that the curtailment of PV sources is minimized and the power fluctuations of the BESS are reduced in comparison to the case without SOP. Constraints in the nodal voltages, power outputs, energy balance, and power flow are all satisfied.

Suggested Citation

  • Hongtao Li & Zijin Li & Bo Wang & Kai Sun, 2024. "Stochastic Optimal Operation of SOP-Assisted Active Distribution Networks with High Penetration of Renewable Energy Sources," Sustainability, MDPI, vol. 16(13), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5808-:d:1431064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    2. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    3. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    4. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    2. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    3. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    4. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    5. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    6. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    7. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    8. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    9. Xu Tang & Liang Qin & Zhichun Yang & Xiangling He & Huaidong Min & Sihan Zhou & Kaipei Liu, 2023. "Optimal Scheduling of AC–DC Hybrid Distribution Network Considering the Control Mode of a Converter Station," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    10. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    11. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    12. Husam A. Ramadan & Spyros Skarvelis-Kazakos, 2022. "DC Soft Open Points for Resilient and Reconfigurable DC Distribution Networks," Energies, MDPI, vol. 15(16), pages 1-23, August.
    13. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    14. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    15. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    17. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    18. Juan Noh & Seungjun Gham & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2023. "A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    19. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    20. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5808-:d:1431064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.