IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2371-d1084923.html
   My bibliography  Save this article

Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review

Author

Listed:
  • Jude Suchithra

    (Australian Power Quality and Reliability Centre, University of Wollongong, Wollongong 2522, Australia)

  • Duane Robinson

    (Australian Power Quality and Reliability Centre, University of Wollongong, Wollongong 2522, Australia)

  • Amin Rajabi

    (DIgSILENT Pacific, Sydney 2000, Australia)

Abstract

Increasing connection rates of rooftop photovoltaic (PV) systems to electricity distribution networks has become a major concern for the distribution network service providers (DNSPs) due to the inability of existing network infrastructure to accommodate high levels of PV penetration while maintaining voltage regulation and other operational requirements. The solution to this dilemma is to undertake a hosting capacity (HC) study to identify the maximum penetration limit of rooftop PV generation and take necessary actions to enhance the HC of the network. This paper presents a comprehensive review of two topics: HC assessment strategies and reinforcement learning (RL)-based coordinated voltage control schemes. In this paper, the RL-based coordinated voltage control schemes are identified as a means to enhance the HC of electricity distribution networks. RL-based algorithms have been widely used in many power system applications in recent years due to their precise, efficient and model-free decision-making capabilities. A large portion of this paper is dedicated to reviewing RL concepts and recently published literature on RL-based coordinated voltage control schemes. A non-exhaustive classification of RL algorithms for voltage control is presented and key RL parameters for the voltage control problem are identified. Furthermore, critical challenges and risk factors of adopting RL-based methods for coordinated voltage control are discussed.

Suggested Citation

  • Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2371-:d:1084923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jain, Akshay Kumar & Horowitz, Kelsey & Ding, Fei & Sedzro, Kwami Senam & Palmintier, Bryan & Mather, Barry & Jain, Himanshu, 2020. "Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study," Applied Energy, Elsevier, vol. 280(C).
    2. Chathurangi, D. & Jayatunga, U. & Perera, S. & Agalgaonkar, A.P. & Siyambalapitiya, T., 2021. "Comparative evaluation of solar PV hosting capacity enhancement using Volt-VAr and Volt-Watt control strategies," Renewable Energy, Elsevier, vol. 177(C), pages 1063-1075.
    3. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    4. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    5. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    6. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    7. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    8. Lee, Xian Yeow & Sarkar, Soumik & Wang, Yubo, 2022. "A graph policy network approach for Volt-Var Control in power distribution systems," Applied Energy, Elsevier, vol. 323(C).
    9. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    10. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    11. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    12. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    13. Nikita Tomin & Nikolai Voropai & Victor Kurbatsky & Christian Rehtanz, 2021. "Management of Voltage Flexibility from Inverter-Based Distributed Generation Using Multi-Agent Reinforcement Learning," Energies, MDPI, vol. 14(24), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    2. Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
    2. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    3. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Jude Suchithra & Duane A. Robinson & Amin Rajabi, 2024. "A Model-Free Deep Reinforcement Learning-Based Approach for Assessment of Real-Time PV Hosting Capacity," Energies, MDPI, vol. 17(9), pages 1-12, April.
    5. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    6. Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
    7. Qingyan Li & Tao Lin & Qianyi Yu & Hui Du & Jun Li & Xiyue Fu, 2023. "Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control," Energies, MDPI, vol. 16(10), pages 1-23, May.
    8. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Jin-Sol Song & Ji-Soo Kim & Barry Mather & Chul-Hwan Kim, 2021. "Hosting Capacity Improvement Method Using MV–MV Solid-State-Transformer," Energies, MDPI, vol. 14(3), pages 1-12, January.
    10. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    11. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    12. Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    14. Edward J. Smith & Duane A. Robinson & Sean Elphick, 2024. "DER Control and Management Strategies for Distribution Networks: A Review of Current Practices and Future Directions," Energies, MDPI, vol. 17(11), pages 1-40, May.
    15. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    16. Enrico Dalla Maria & Mattia Secchi & David Macii, 2021. "A Flexible Top-Down Data-Driven Stochastic Model for Synthetic Load Profiles Generation," Energies, MDPI, vol. 15(1), pages 1-20, December.
    17. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    18. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    19. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    20. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2371-:d:1084923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.