IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp576-587.html
   My bibliography  Save this article

Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler

Author

Listed:
  • Caposciutti, Gianluca
  • Barontini, Federica
  • Antonelli, Marco
  • Tognotti, Leonardo
  • Desideri, Umberto

Abstract

The world energy demand growth is more and more supplied by renewable energy sources. In this scenario, biomass has a key role in both heat and power generation. Particularly, biomass combustion can be used in small size micro and distributed generation systems, or in smart grids together with wind and solar energy where a programmable energy source is necessary to keep the electric grid stable. In this paper, a small size 140 kWth biomass fixed bed boiler of the University of Pisa, located at the Biomass to Energy Inter-University Research Centre (CRIBE), was studied experimentally to characterize the biomass combustion process. Emissions of NOx, O2, CO2 and CO, together with the temperature data, were measured in the flue gases. Moreover, the spatial distribution of volatile products from the fixed bed surface, such as H2, CO, CO2, CH4, C2H6, C2H4, C2H2, together with temperature data, was studied in the early combustion stage. The parametric variation of the feed air flow and its effect on the emissions and performances was also investigated. The results indicate that the primary air mainly affects the volatiles distribution on the biomass combustion surface. Therefore, the CO emission was minimized at values of 0.03%vol with an air excess equal to 2 and a 0.06 secondary to primary air mass flow ratio.

Suggested Citation

  • Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:576-587
    DOI: 10.1016/j.apenergy.2018.02.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    2. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    3. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    4. Ström, Henrik & Thunman, Henrik, 2013. "A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion," Applied Energy, Elsevier, vol. 112(C), pages 808-817.
    5. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    6. Gehrig, M. & Pelz, S. & Jaeger, D. & Hofmeister, G. & Groll, A. & Thorwarth, H. & Haslinger, W., 2015. "Implementation of a firebed cooling device and its influence on emissions and combustion parameters at a residential wood pellet boiler," Applied Energy, Elsevier, vol. 159(C), pages 310-316.
    7. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    8. Anaya, Karim L. & Pollitt, Michael G., 2017. "Going smarter in the connection of distributed generation," Energy Policy, Elsevier, vol. 105(C), pages 608-617.
    9. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    10. Batas-Bjelic, Ilija & Rajakovic, Nikola & Duic, Neven, 2017. "Smart municipal energy grid within electricity market," Energy, Elsevier, vol. 137(C), pages 1277-1285.
    11. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zadravec, Tomas & Rajh, Boštjan & Kokalj, Filip & Samec, Niko, 2021. "Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study," Renewable Energy, Elsevier, vol. 178(C), pages 532-548.
    2. Eo, Jae Won & Kim, Min Jun & Jeong, In Seon & Cho, LaHoon & Kim, Seok Jun & Park, Sunyong & Kim, Dae Hyun, 2021. "Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics," Energy, Elsevier, vol. 228(C).
    3. Caposciutti, Gianluca & Barontini, Federica & Galletti, Chiara & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2020. "Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 151(C), pages 161-174.
    4. Böhler, Lukas & Fallmann, Markus & Görtler, Gregor & Krail, Jürgen & Schittl, Florian & Kozek, Martin, 2021. "Emission limited model predictive control of a small-scale biomass furnace," Applied Energy, Elsevier, vol. 285(C).
    5. Böhler, Lukas & Görtler, Gregor & Krail, Jürgen & Kozek, Martin, 2019. "Carbon monoxide emission models for small-scale biomass combustion of wooden pellets," Applied Energy, Elsevier, vol. 254(C).
    6. Cavalli, A. & Kunze, M. & Aravind, P.V., 2018. "Cross-influence of toluene as tar model compound and HCl on Solid Oxide Fuel Cell anodes in Integrated Biomass Gasifier SOFC Systems," Applied Energy, Elsevier, vol. 231(C), pages 1-11.
    7. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Böhler, Lukas & Krail, Jürgen & Görtler, Gregor & Kozek, Martin, 2020. "Fuzzy model predictive control for small-scale biomass combustion furnaces," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
    2. Mohamed Ali Mami & Hartmut Mätzing & Hans-Joachim Gehrmann & Dieter Stapf & Rainer Bolduan & Marzouk Lajili, 2018. "Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor," Energies, MDPI, vol. 11(8), pages 1-21, July.
    3. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    6. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    7. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    8. Nikolaos Efkarpidis & Andrija Goranović & Chen-Wei Yang & Martin Geidl & Ingo Herbst & Stefan Wilker & Thilo Sauter, 2022. "A Generic Framework for the Definition of Key Performance Indicators for Smart Energy Systems at Different Scales," Energies, MDPI, vol. 15(4), pages 1-30, February.
    9. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    10. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    11. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    12. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    13. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Sébastien Fournel & Joahnn H. Palacios & Stéphane Godbout & Michèle Heitz, 2015. "Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass," Agriculture, MDPI, vol. 5(3), pages 1-16, July.
    15. Namkung, Hueon & Lee, Young-Joo & Park, Ju-Hyoung & Song, Gyu-Seob & Choi, Jong Won & Kim, Joeng-Geun & Park, Se-Joon & Park, Joo Chang & Kim, Hyung-Taek & Choi, Young-Chan, 2019. "Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors," Energy, Elsevier, vol. 187(C).
    16. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    17. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    18. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    19. Suyitno & Heru Sutanto & Mohammad Muqoffa & Tito Gusti Nurrohim, 2022. "An Experimental and Numerical Study of the Burning of Calliandra Wood Pellets in a 200 kW Furnace," Energies, MDPI, vol. 15(21), pages 1-14, November.
    20. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:576-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.