IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2307-d240408.html
   My bibliography  Save this article

From Carbon Calculators to Energy System Analysis in Cities

Author

Listed:
  • David Drysdale

    (Department of Planning, Aalborg University, A C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Brian Vad Mathiesen

    (Department of Planning, Aalborg University, A C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Henrik Lund

    (Department of Planning, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark)

Abstract

Energy systems in cities need to be decarbonized and are becoming more integrated via energy sector coupling. Today, cities often use simple methods to assess their low carbon targets, e.g., carbon calculators, and these methods use annualized carbon reduction potentials. For example, reductions from heat savings in buildings or fuel demand in transport. This is done because it is simple and fast. This paper describes a methodology that goes beyond carbon calculators and assesses highly renewable energy systems. The methodology is carried out for a case city—Sønderborg, Denmark. Using a national 100% renewable energy study and a suitable energy system analysis tool (EnergyPLAN), the method accounts for inter-sector coupling and energy system dynamics. The energy system is assessed by comparing the results from the analysis tool against numerous key sustainability factors for a Smart Energy System. The paper illustrates how the method delivers a sustainable 100% renewable Smart Energy System for Sønderborg, which can be part of the Danish energy system in 2050 based on local resources. The paper discusses the broader applicability of the method within strategic energy planning.

Suggested Citation

  • David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2307-:d:240408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    3. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    4. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    5. De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2018. "A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy," Energy, Elsevier, vol. 143(C), pages 347-362.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    8. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    9. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    10. Harrison, R. Wes, 2013. "R. Wes Harrison," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 45, pages 1-2, August.
    11. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    12. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    13. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    14. Delponte, Ilaria & Pittaluga, Ilaria & Schenone, Corrado, 2017. "Monitoring and evaluation of Sustainable Energy Action Plan: Practice and perspective," Energy Policy, Elsevier, vol. 100(C), pages 9-17.
    15. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    16. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
    3. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    4. Merit Tatar & Tarmo Kalvet & Marek Tiits, 2020. "Cities4ZERO Approach to Foresight for Fostering Smart Energy Transition on Municipal Level," Energies, MDPI, vol. 13(14), pages 1-30, July.
    5. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    6. Hannah Mareike Marczinkowski & Luísa Barros, 2020. "Technical Approaches and Institutional Alignment to 100% Renewable Energy System Transition of Madeira Island—Electrification, Smart Energy and the Required Flexible Market Conditions," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Andreas Dyreborg Martin, 2023. "Co-Development of a Tool to Aid the Assessment of Biomass Potential for Sustainable Resource Utilization: An Exploratory Study with Danish and Swedish Municipalities," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    8. Battaglia, V. & Massarotti, N. & Vanoli, L., 2022. "Urban regeneration plans: Bridging the gap between planning and design energy districts," Energy, Elsevier, vol. 254(PA).
    9. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.
    10. Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
    11. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    12. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    13. Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    4. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    6. Rasmus Magni Johannsen & Poul Alberg Østergaard & David Maya-Drysdale & Louise Krog Elmegaard Mouritsen, 2021. "Designing Tools for Energy System Scenario Making in Municipal Energy Planning," Energies, MDPI, vol. 14(5), pages 1-17, March.
    7. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    8. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    9. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    11. Bartolini, Andrea & Comodi, Gabriele & Salvi, Danilo & Østergaard, Poul Alberg, 2020. "Renewables self-consumption potential in districts with high penetration of electric vehicles," Energy, Elsevier, vol. 213(C).
    12. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    13. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    14. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Kılkış, Şiir, 2015. "Exergy transition planning for net-zero districts," Energy, Elsevier, vol. 92(P3), pages 515-531.
    16. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    17. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    18. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    19. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    20. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2307-:d:240408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.