IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1289-d746266.html
   My bibliography  Save this article

A Generic Framework for the Definition of Key Performance Indicators for Smart Energy Systems at Different Scales

Author

Listed:
  • Nikolaos Efkarpidis

    (Institute of Electric Power Systems, University of Applied Sciences and Arts Northwestern Switzerland, (FHNW), Klosterzelgstrasse 2, CH-5210 Windisch, Switzerland)

  • Andrija Goranović

    (Institute of Computer Technology, TU Wien, Gusshaus Str. 27-29/e384, AT-1040 Vienna, Austria)

  • Chen-Wei Yang

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Regnbågsallén, SE-97754 Luleå, Sweden)

  • Martin Geidl

    (Institute of Electric Power Systems, University of Applied Sciences and Arts Northwestern Switzerland, (FHNW), Klosterzelgstrasse 2, CH-5210 Windisch, Switzerland)

  • Ingo Herbst

    (Siemens Schweiz AG Smart Infrastructure, Freilagerstrasse 40, CH-8047 Zurich, Switzerland)

  • Stefan Wilker

    (Institute of Computer Technology, TU Wien, Gusshaus Str. 27-29/e384, AT-1040 Vienna, Austria)

  • Thilo Sauter

    (Institute of Computer Technology, TU Wien, Gusshaus Str. 27-29/e384, AT-1040 Vienna, Austria)

Abstract

The growing integration of intermittent renewable energy sources (RESs) and the increasing trend of shutting down fossil-fuel-based power plants has brought about the need for additional flexibility in energy systems. This flexibility can be provided in various forms, including controllable generation and consumption, storage, conversions, and exchanges with interconnected systems. In this context, an increasing focus is placed on the development of smart energy systems (SESs) that combine different types of distributed energy resources (DERs), information and communication technologies (ICTs), demand side management (DSM), and energy conversion technologies. The utilization of SESs can lead to multiple benefits for the stakeholders involved; therefore, the assessment of their performance is a primary concern. Due to their multidisciplinary nature, there are no known or universally accepted standards for assessing the performance of SESs. Previous efforts only define key performance indicators (KPIs) for individual homogeneous subsystems, focusing on a specific SES type and application area. This paper focuses on the development of a novel comprehensive KPI framework that can be applied to any type of SES, regardless of the application area. The proposed framework consists of four layers that specify the application area, the main SES requirements, and the involved stakeholders’ objectives. Next, the KPIs are identified for each of the stakeholders’ objectives. The proposed KPI framework is applied to the use case of a European research project with different application areas, to demonstrate its features. Finally, a repository of KPIs is identified for each use case with respect to the aforementioned SES requirements.

Suggested Citation

  • Nikolaos Efkarpidis & Andrija Goranović & Chen-Wei Yang & Martin Geidl & Ingo Herbst & Stefan Wilker & Thilo Sauter, 2022. "A Generic Framework for the Definition of Key Performance Indicators for Smart Energy Systems at Different Scales," Energies, MDPI, vol. 15(4), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1289-:d:746266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    2. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    3. Jaume Salom & Meril Tamm & Inger Andresen & Davide Cali & Ábel Magyari & Viktor Bukovszki & Rebeka Balázs & Paraskevi Vivian Dorizas & Zsolt Toth & Sheikh Zuhaib & Clara Mafé & Caroline Cheng & András, 2021. "An Evaluation Framework for Sustainable Plus Energy Neighbourhoods: Moving Beyond the Traditional Building Energy Assessment," Energies, MDPI, vol. 14(14), pages 1-25, July.
    4. Marion Gottschalk & Gerald Franzl & Matthias Frohner & Richard Pasteka & Mathias Uslar, 2018. "From Integration Profiles to Interoperability Testing for Smart Energy Systems at Connectathon Energy," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    6. Antje Matern & Julia Binder & Anika Noack, 2020. "Smart regions: insights from hybridization and peripheralization research," European Planning Studies, Taylor & Francis Journals, vol. 28(10), pages 2060-2077, October.
    7. Dionysios Pramangioulis & Konstantinos Atsonios & Nikos Nikolopoulos & Dimitrios Rakopoulos & Panagiotis Grammelis & Emmanuel Kakaras, 2019. "A Methodology for Determination and Definition of Key Performance Indicators for Smart Grids Development in Island Energy Systems," Energies, MDPI, vol. 12(2), pages 1-22, January.
    8. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    9. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    10. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heiko Waurisch & Nick von Bargen & Nico Ploczicki & Bente Ralfs & Berit Elsner & Reiner Schütt & Nassipkul Dyussembekova, 2024. "Assessment of Grid and System Supportability Based on Spatio-Temporal Conditions—Novel Key Performance Indicators for Energy System Evaluation," Energies, MDPI, vol. 17(7), pages 1-19, March.
    2. Eleonora Desogus & Ettore Bompard & Daniele Grosso, 2024. "A Composite Index for Tracking the Evolution towards Energy Transition at Urban Scale: The Turin Case Study," Energies, MDPI, vol. 17(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Menapace, Andrea & Thellufsen, Jakob Zinck & Pernigotto, Giovanni & Roberti, Francesca & Gasparella, Andrea & Righetti, Maurizio & Baratieri, Marco & Lund, Henrik, 2020. "The design of 100 % renewable smart urb an energy systems: The case of Bozen-Bolzano," Energy, Elsevier, vol. 207(C).
    3. Salem Ahmed Alabdali & Salvatore Flavio Pileggi & Dilek Cetindamar, 2023. "Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review," Sustainability, MDPI, vol. 15(10), pages 1-38, May.
    4. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    10. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    11. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    12. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    13. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    14. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    15. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    16. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    17. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    18. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    19. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    20. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1289-:d:746266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.