IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6530-d654005.html
   My bibliography  Save this article

Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases

Author

Listed:
  • Bartosz Ciupek

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Karol Gołoś

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Radosław Jankowski

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Zbigniew Nadolny

    (Department of High Voltage and Electrotechnical Materials, Faculty of Environmental Engineering and Energy, Institute of Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

This academic paper revolves around the results of research on the change in emission parameters of the used heating boiler following the introduction of the overheated water stream, which had an impact on different emission parameters. The research results provide an insight into the hard coal combustion process, which had a significant impact on the change in the chemical composition of exhaust gases: it contributed to the lower mass concentration of the emitted dust and black carbon (PM) as well as nitric oxides (NOx) while, at the same time, playing a significant role in increasing the mass concentration of the emitted carbon oxide (CO). Two types of devices were used for the purposes of conducting the research at hand: a boiler with an automatic fuel feeding system with one combustion chamber and a boiler with a combustion chamber and an afterburning chamber fitted over it. Apart from the measurements of mass concentration of the emitted harmful substances, the research also focused on measurements of temperature inside the combustion and afterburning chambers, as well as the temperature of exhaust gases and their oxygen content. As part of the research, water steam was introduced to the combustion and afterburning chambers at the flow rate of 0.71 kg/h and 3.60 kg/h for boilers operating at a minimum power of 30% and a nominal power of 100%. An original steam generator with an overheated water steam production range from 0.71 kg/h to 3.60 kg/h was used to create and feed the water steam. The efficiency of the combustion process was calculated using the obtained results for each operating configuration of a given boiler.

Suggested Citation

  • Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6530-:d:654005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunita Pokharel & Mohsen Ayoobi & V’yacheslav Akkerman, 2021. "Computational Analysis of Premixed Syngas/Air Combustion in Micro-channels: Impacts of Flow Rate and Fuel Composition," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    4. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    5. Bartosz Ciupek & Wojciech Judt & Karol Gołoś & Rafał Urbaniak, 2021. "Analysis of Low-Power Boilers Work on Real Heat Loads: A Case of Poland," Energies, MDPI, vol. 14(11), pages 1-13, May.
    6. Beata Kurc & Piotr Lijewski & Łukasz Rymaniak & Paweł Fuć & Marita Pigłowska & Rafał Urbaniak & Bartosz Ciupek, 2020. "High-Energy Solid Fuel Obtained from Carbonized Rice Starch," Energies, MDPI, vol. 13(16), pages 1-18, August.
    7. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    9. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    10. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Leszek Mieszkalski & Joanna Wichłacz, 2020. "Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device," Energies, MDPI, vol. 13(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zadravec, Tomas & Rajh, Boštjan & Kokalj, Filip & Samec, Niko, 2021. "Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study," Renewable Energy, Elsevier, vol. 178(C), pages 532-548.
    2. Steiner, Maximilian & Anca-Couce, Andrés & Hochenauer, Christoph & Buchmayr, Markus & Scharler, Robert, 2024. "Relevance and prediction of N2O in small-scale multi-fuel biomass furnaces using primary NOx reduction measures," Renewable Energy, Elsevier, vol. 229(C).
    3. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    5. Bartosz Ciupek & Wojciech Judt & Karol Gołoś & Rafał Urbaniak, 2021. "Analysis of Low-Power Boilers Work on Real Heat Loads: A Case of Poland," Energies, MDPI, vol. 14(11), pages 1-13, May.
    6. Bartosz Ciupek & Rafał Urbaniak & Dobrosława Kinalska & Zbigniew Nadolny, 2024. "Flue Gas Recirculation System for Biomass Heating Boilers—Research and Technical Applications for Reductions in Nitrogen Oxides (NO x ) Emissions," Energies, MDPI, vol. 17(1), pages 1-16, January.
    7. Artur Kraszkiewicz & Artur Przywara & Stanisław Parafiniuk, 2022. "Emission of Nitric Oxide during the Combustion of Various Forms of Solid Biofuels in a Low-Power Heating Device," Energies, MDPI, vol. 15(16), pages 1-19, August.
    8. Gollmer, Christian & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation," Renewable Energy, Elsevier, vol. 164(C), pages 1471-1484.
    9. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    10. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    11. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    12. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    13. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    14. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    15. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    16. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    17. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    18. Schumacher, Felix & Nussbaumer, Thomas, 2023. "Four approaches for the year-round operation of wood-fired heating plants with low pollutant emissions," Energy, Elsevier, vol. 278(C).
    19. Przemysław Rybiński & Bartłomiej Syrek & Mirosław Szwed & Dariusz Bradło & Witold Żukowski & Anna Marzec & Magdalena Śliwka-Kaszyńska, 2021. "Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases," Energies, MDPI, vol. 14(11), pages 1-14, June.
    20. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6530-:d:654005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.