Complementary enhanced solar thermal conversion performance of core-shell nanoparticles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.11.087
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
- Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
- Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
- Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
- Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo & Milanese, Marco & Laforgia, Domenico, 2015. "Experimental test of an innovative high concentration nanofluid solar collector," Applied Energy, Elsevier, vol. 154(C), pages 874-881.
- Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
- Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
- Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
- Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
- Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
- Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using [beta]-Aluminum nitride," Applied Energy, Elsevier, vol. 86(7-8), pages 1196-1200, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
- Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
- Chen, Xingyu & Chen, Meijie & Zhou, Ping, 2022. "Solar-thermal conversion performance of heterogeneous nanofluids," Renewable Energy, Elsevier, vol. 198(C), pages 1307-1317.
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
- Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
- Chen, Xingyu & Zhou, Ping & Yan, Hongjie & Chen, Meijie, 2021. "Systematically investigating solar absorption performance of plasmonic nanoparticles," Energy, Elsevier, vol. 216(C).
- Pei, Maoqing & Liu, Huawei & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Investigation and optimization of the performance of a spectrum splitting photovoltaic/thermal system using multiple kinds of core-shell nanofluids," Energy, Elsevier, vol. 288(C).
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
- Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
- Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
- Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Zhang, Zhiyu & Gu, Jie & Niu, Yonghong, 2016. "Numerical study of the improvement of an indirect contact mobilized thermal energy storage container," Applied Energy, Elsevier, vol. 161(C), pages 476-486.
- Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
- Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
- Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
- Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
- Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
- Chen, Changzhong & Wang, Linge & Huang, Yong, 2011. "Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends," Applied Energy, Elsevier, vol. 88(9), pages 3133-3139.
- Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
- Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
More about this item
Keywords
Solar thermal conversion; Core-shell nanoparticle; Finite difference time domain; Optical properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:735-742. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.