IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp181-189.html
   My bibliography  Save this article

Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)

Author

Listed:
  • Wang, Weilong
  • Guo, Shaopeng
  • Li, Hailong
  • Yan, Jinyue
  • Zhao, Jun
  • Li, Xun
  • Ding, Jing

Abstract

A mobilized thermal energy storage (TES) system has been proposed to recover and use industrial waste or excess heat for distributed users. In this paper, lab-scale test facilities have been built to understand the mechanisms of heat charging and discharging processes. The facilities consist of a direct/indirect-contact thermal energy storage container, heat transfer oil (HTO)/water tanks, an electrical boiler, HTO/water pumps and a plate heat exchanger. The organic phase change material (PCM), erythritol, which is sugar alcohol, was chosen as the working material due to its large heat density (330kJ/kg) and suitable melting point (118°C) for industrial low-temperature heat recovery, as well as non toxic and corrosive. Although differential scanning calorimetry tests have shown that a large temperature range exists during the phase change of erythritol, it did not affect the heat discharging during the tests of system performance. Heat charging/discharging results show that for the direct-contact storage container, heat discharging process is much faster than charging process. At the initial stage of heat charging, heat transfer oil is blocked to enter the container, resulting in a slow charging rate. Meanwhile, the PCM attached on the container wall on the bottom always melts last. It has been found that increasing the flow rate of HTO can effectively enhance the charging/discharging processes. For the indirect-contact storage container, heat charging and discharging take almost the same time; and the flow rate of HTO does not show an obvious effect on the charging and discharging processes due to the weak thermal conductivity of the solid phase change material. Comparatively, using the direct-contact storage container may achieve shorter charging/discharging processes than using the indirect-contact storage container.

Suggested Citation

  • Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:181-189
    DOI: 10.1016/j.apenergy.2013.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913010672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavsson, Leif & Karlsson, Asa, 2002. "A system perspective on the heating of detached houses," Energy Policy, Elsevier, vol. 30(7), pages 553-574, June.
    2. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    3. Guo, Shaopeng & Li, Hailong & Zhao, Jun & Li, Xun & Yan, Jinyue, 2013. "Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1416-1423.
    4. Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, vol. 86(10), pages 2047-2055, October.
    5. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
    6. Gustavsson, L & Karlsson, Å, 2003. "Heating detached houses in urban areas," Energy, Elsevier, vol. 28(8), pages 851-875.
    7. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    8. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    9. Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
    10. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
    11. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    12. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    13. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using [beta]-Aluminum nitride," Applied Energy, Elsevier, vol. 86(7-8), pages 1196-1200, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    3. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    4. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
    5. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    6. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    7. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Zhang, Zhiyu & Gu, Jie & Niu, Yonghong, 2016. "Numerical study of the improvement of an indirect contact mobilized thermal energy storage container," Applied Energy, Elsevier, vol. 161(C), pages 476-486.
    8. Chen, Changzhong & Wang, Linge & Huang, Yong, 2011. "Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends," Applied Energy, Elsevier, vol. 88(9), pages 3133-3139.
    9. Wang, Chih Lin & Yeh, Kuan Lin & Chen, Chih Wei & Lee, Yun & Lee, Hung Lin & Lee, Tu, 2017. "A quick-fix design of phase change material by particle blending and spherical agglomeration," Applied Energy, Elsevier, vol. 191(C), pages 239-250.
    10. Chiu, Justin N.W. & Martin, Viktoria, 2012. "Submerged finned heat exchanger latent heat storage design and its experimental verification," Applied Energy, Elsevier, vol. 93(C), pages 507-516.
    11. Castell, A. & Belusko, M. & Bruno, F. & Cabeza, L.F., 2011. "Maximisation of heat transfer in a coil in tank PCM cold storage system," Applied Energy, Elsevier, vol. 88(11), pages 4120-4127.
    12. Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
    13. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    14. Lu, W. & Tassou, S.A., 2012. "Experimental study of the thermal characteristics of phase change slurries for active cooling," Applied Energy, Elsevier, vol. 91(1), pages 366-374.
    15. Bouadila, Salwa & Kooli, Sami & Lazaar, Mariem & Skouri, Safa & Farhat, Abdelhamid, 2013. "Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use," Applied Energy, Elsevier, vol. 110(C), pages 267-275.
    16. Cai, Yibing & Ke, Huizhen & Dong, Ju & Wei, Qufu & Lin, Jiulong & Zhao, Yong & Song, Lei & Hu, Yuan & Huang, Fenglin & Gao, Weidong & Fong, Hao, 2011. "Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials," Applied Energy, Elsevier, vol. 88(6), pages 2106-2112, June.
    17. Lu, W. & Tassou, S.A., 2013. "Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications," Applied Energy, Elsevier, vol. 112(C), pages 1376-1382.
    18. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    19. Álvarez, Servando & Cabeza, Luisa F. & Ruiz-Pardo, Alvaro & Castell, Albert & Tenorio, José Antonio, 2013. "Building integration of PCM for natural cooling of buildings," Applied Energy, Elsevier, vol. 109(C), pages 514-522.
    20. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:181-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.