IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v161y2016icp476-486.html
   My bibliography  Save this article

Numerical study of the improvement of an indirect contact mobilized thermal energy storage container

Author

Listed:
  • Guo, Shaopeng
  • Zhao, Jun
  • Wang, Weilong
  • Yan, Jinyue
  • Jin, Guang
  • Zhang, Zhiyu
  • Gu, Jie
  • Niu, Yonghong

Abstract

In this paper, the melting and solidification behaviours of the PCM in an indirect contact mobilized thermal energy storage (ICM-TES) container were numerically investigated to facilitate the further understanding of the phase change mechanism in the container. A 2D model was built based on the simplification and assumptions of experiments, which were validated by comparing the results of computations and measurements. Then, three options, i.e., a high thermal conductivity material (expanded graphite) addition, the tube diameter and the adjustment of the internal structure of the container and fin installation, were analyzed to seek effective approaches for the improvement of the ICM-TES performance. The results show that the optimal parameters of the three options are 10vol.% (expanded graphite proportion), 22mm (tube diameter) and 0.468m2 (fin area). When the three options are applied simultaneously, the charging time is reduced by approximately 74% and the discharging time by 67%.

Suggested Citation

  • Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Zhang, Zhiyu & Gu, Jie & Niu, Yonghong, 2016. "Numerical study of the improvement of an indirect contact mobilized thermal energy storage container," Applied Energy, Elsevier, vol. 161(C), pages 476-486.
  • Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:476-486
    DOI: 10.1016/j.apenergy.2015.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
    2. Wang, Tongcai & Luan, Weiling & Wang, Wei & Tu, Shan-Tung, 2014. "Waste heat recovery through plate heat exchanger based thermoelectric generator system," Applied Energy, Elsevier, vol. 136(C), pages 860-865.
    3. Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
    4. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2012. "Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors," Energy, Elsevier, vol. 46(1), pages 629-635.
    5. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
    6. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    7. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    8. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    9. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    10. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
    11. Chien-Chung Nieh & Hwey-Yun Yau & Ken Hung & Hong-Kou Ou & Shine Hung, 2013. "Cointegration and causal relationships among steel prices of Mainland China, Taiwan, and USA in the presence of multiple structural changes," Empirical Economics, Springer, vol. 44(2), pages 545-561, April.
    12. Guo, Shaopeng & Li, Hailong & Zhao, Jun & Li, Xun & Yan, Jinyue, 2013. "Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1416-1423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    2. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    3. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    4. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    5. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    6. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    7. Guo, Shaopeng & Liu, Qibin & Zhao, Jun & Jin, Guang & Wang, Xiaotong & Lang, Zhongmin & He, Wenxiu & Gong, Zhijun, 2017. "Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes," Applied Energy, Elsevier, vol. 205(C), pages 703-709.
    8. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Liu, Huan & Jing, Jianwei & Liu, Jianxin & Wang, Xiaodong, 2024. "Sugar alcohol-based phase change materials for thermal energy storage: Optimization design and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    12. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    13. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Pathak, Saurabh & Jain, Komal & Kumar, Prashant & Wang, Xu & Pant, R.P., 2019. "Improved thermal performance of annular fin-shell tube storage system using magnetic fluid," Applied Energy, Elsevier, vol. 239(C), pages 1524-1535.
    15. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    16. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    17. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
    18. Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    19. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    20. Geyer, Philipp & Buchholz, Martin & Buchholz, Reiner & Provost, Mathieu, 2017. "Hybrid thermo-chemical district networks – Principles and technology," Applied Energy, Elsevier, vol. 186(P3), pages 480-491.
    21. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    3. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    4. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    5. Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
    6. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    7. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    8. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    9. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    10. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    11. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    13. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    15. Chen, Meijie & He, Yurong & Wang, Xinzhi & Hu, Yanwei, 2018. "Complementary enhanced solar thermal conversion performance of core-shell nanoparticles," Applied Energy, Elsevier, vol. 211(C), pages 735-742.
    16. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
    17. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    18. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    19. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    20. Marta Kuta, 2022. "Mobilized Thermal Energy Storage for Waste Heat Recovery and Utilization-Discussion on Crucial Technology Aspects," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:161:y:2016:i:c:p:476-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.