IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp462-470.html
   My bibliography  Save this article

Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation

Author

Listed:
  • Pashchenko, Dmitry

Abstract

In this study, numerical simulations and experiments have been carried out to explore the pressure drop and the loss factor in the thermochemical recuperators filled with the catalysts of various shapes. The reaction space of the thermochemical recuperators is presented as the porous packed bed with Ni-Al2O3 catalyst. The commercial program ANSYS Fluent is used. The comparison of the pressure drops between experimental and simulation results showed a good correlation with divergence of results less than 8%. The dependence of the pressure loss for the different depths of the packed bed is approximately linear. To determine the effect of the porosity properties of the medium on numerical results, two cases of CFD modeling were realized (with taking into account the porous medium properties and without it). The discrepancy between results is increasing with an increase of the gas velocity, while for the low velocities the results are almost similar. A recommendation for the engineering solutions is given, for saving calculation time at the low velocity, the packed bed can be considered as a solid body and the porous media properties can be ignored in the numerical model. Recommendations for engineering calculations of the thermochemical recuperation system are given.

Suggested Citation

  • Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:462-470
    DOI: 10.1016/j.energy.2018.10.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming," Applied Energy, Elsevier, vol. 195(C), pages 503-522.
    2. Cocco, Daniele & Tola, Vittorio & Cau, Giorgio, 2006. "Performance evaluation of chemically recuperated gas turbine (CRGT) power plants fuelled by di-methyl-ether (DME)," Energy, Elsevier, vol. 31(10), pages 1446-1458.
    3. Bogarra, M. & Herreros, J.M. & Tsolakis, A. & York, A.P.E. & Millington, P.J., 2016. "Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming," Applied Energy, Elsevier, vol. 180(C), pages 245-255.
    4. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Hochenauer, Christoph, 2018. "An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit," Energy, Elsevier, vol. 155(C), pages 381-391.
    5. Verkhivker, Gregoriy & Kravchenko, Vladimir, 2004. "The use of chemical recuperation of heat in a power plant," Energy, Elsevier, vol. 29(3), pages 379-388.
    6. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    7. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    8. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    9. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    10. Poran, A. & Tartakovsky, L., 2017. "Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system," Energy, Elsevier, vol. 124(C), pages 214-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Wang & Feng Wang & Bohong Chen, 2020. "Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery," Energies, MDPI, vol. 13(7), pages 1-18, March.
    2. Wu, Zhihong & Huang, Zexuan & Yang, Jian & Gkogkos, Georgios & Wang, Qiuwang, 2024. "Numerical investigation of methane steam reforming in the packed bed installed with the fin-metal foam," Energy, Elsevier, vol. 307(C).
    3. Qi, Meng & Lee, Jaewon & Hong, Seokyoung & Kim, Jeongdong & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    2. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    3. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    4. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    5. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    6. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    7. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).
    8. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    10. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    11. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    12. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    13. Pashchenko, Dmitry & Makarov, Ivan, 2021. "Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis," Energy, Elsevier, vol. 222(C).
    14. Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
    15. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    16. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    17. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    18. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2021. "Sustainable Gas-to-Wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    20. Zhou, Shengdong & Bai, Zhang & Li, Qi & Yuan, Yu & Wang, Shuoshuo, 2024. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Optimized recuperation regulation with syngas storage," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:462-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.