IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v193y2017icp28-51.html
   My bibliography  Save this article

Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application

Author

Listed:
  • Xing, Fei
  • Kumar, Arvind
  • Huang, Yue
  • Chan, Shining
  • Ruan, Can
  • Gu, Sai
  • Fan, Xiaolei

Abstract

Flameless combustion has been developed to reduce emissions while retaining thermal efficiencies in combustion systems. It is characterized with its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise and thermal stress for burners and less restriction on fuels (since no flame stability is required). Recent research has shown the potential of flameless combustion in the power generation industry such as gas turbines. In spite of its potential, this technology needs further research and development to improve its versatility in using liquid fuels as a source of energy. In this review, progress toward the application of the flameless technique was presented with an emphasis on gas turbines. A systematic analysis of the state-of-the-art flameless combustion and the major technical and physical challenges in operating gas turbines with liquid fuels in a flameless combustion mode was presented. Combustion characteristics of flameless combustion were explained along with a thorough review of the modelling and simulation of the liquid fuel fed flameless combustion. A special focus was given to the relevant research on the applications of flameless combustion to the inner turbine burners. The paper was concluded by highlighting the recent findings and pointing out several further research directions to improve the flameless combustion in gas turbines, including in-depth flow and combustion mechanisms, advanced modelling, developed experimental technology and comprehensive design methods aiming at gas turbine flameless combustors.

Suggested Citation

  • Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
  • Handle: RePEc:eee:appene:v:193:y:2017:i:c:p:28-51
    DOI: 10.1016/j.apenergy.2017.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917301228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Development of high intensity CDC combustor for gas turbine engines," Applied Energy, Elsevier, vol. 88(3), pages 963-973, March.
    2. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.
    3. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Investigation of forward flow distributed combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(1), pages 29-40, January.
    4. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    5. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    7. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Investigation of reverse flow distributed combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(4), pages 1096-1104, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Zhang & Shengxiang Deng, 2017. "Evaluating Heat Flux Profiles in Aluminum Reheating Furnace with Regenerative Burner," Energies, MDPI, vol. 10(4), pages 1-15, April.
    2. Orati, Edson & Veríssimo, Anton S. & Rocha, Ana Maura A. & Costa, Fernando S. & Carvalho, João A., 2022. "Experimental investigation of flameless combustion of biodiesel," Energy, Elsevier, vol. 255(C).
    3. Marius Zoder & Janosch Balke & Mathias Hofmann & George Tsatsaronis, 2018. "Simulation and Exergy Analysis of Energy Conversion Processes Using a Free and Open-Source Framework—Python-Based Object-Oriented Programming for Gas- and Steam Turbine Cycles," Energies, MDPI, vol. 11(10), pages 1-19, September.
    4. Shen, Yazhou & Zhang, Kai & Zhang, Yan & Duwig, Christophe, 2023. "Characterisation of distributed combustion of reformed methanol blends in a model gas turbine combustor," Energy, Elsevier, vol. 272(C).
    5. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    6. Józsa, Viktor & Malý, Milan & Füzesi, Dániel & Rácz, Erika & Kardos, Réka Anna & Jedelský, Jan, 2023. "Schlieren analysis of non-MILD distributed combustion in a mixture temperature-controlled burner," Energy, Elsevier, vol. 273(C).
    7. Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
    8. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    11. Hidegh, Gyöngyvér & Csemány, Dávid & Vámos, János & Kavas, László & Józsa, Viktor, 2021. "Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels," Energy, Elsevier, vol. 234(C).
    12. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    13. Zahra S. Musavi & Henrik Kusar & Robert Andersson & Klas Engvall, 2018. "Modelling and Optimization of a Small Diesel Burner for Mobile Applications," Energies, MDPI, vol. 11(11), pages 1-21, October.
    14. Huang, Yakun & He, Xiaomin & Jin, Yi & Zhu, Huanyu & Zhu, Zhixin, 2021. "Effect of non-uniform inlet profile on the combustion performance of an afterburner with bluff body," Energy, Elsevier, vol. 216(C).
    15. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    16. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Ge, Zhenghao & Sun, Yuan, 2017. "Dome structure effects on combustion performance of a trapped vortex combustor," Applied Energy, Elsevier, vol. 208(C), pages 72-82.
    17. Huang, Yakun & He, Xiaomin & Zhang, Huangwei & Zhu, Zhixin & Zhu, Huanyu, 2022. "Flame stability optimization of cavity primary air-jet form in an augmentor," Energy, Elsevier, vol. 239(PA).
    18. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    19. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    20. Li, Zhiyi & Ferrarotti, Marco & Cuoci, Alberto & Parente, Alessandro, 2018. "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, Elsevier, vol. 225(C), pages 637-655.
    21. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Yao, Kanghong & Ge, Zhenghao, 2018. "Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer," Applied Energy, Elsevier, vol. 216(C), pages 286-295.
    22. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    2. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    3. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    4. Gupta, Shreshtha Kumar & Kushwaha, Abhijit Kumar & Arghode, Vaibhav Kumar, 2020. "Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines," Energy, Elsevier, vol. 193(C).
    5. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    6. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    7. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    8. Zeinivand, Hamed & Bazdidi-Tehrani, Farzad, 2012. "Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor," Applied Energy, Elsevier, vol. 92(C), pages 348-360.
    9. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.
    10. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    11. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    12. Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    14. Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
    15. Pramanik, Santanu & Ravikrishna, R.V., 2022. "Non premixed operation strategies for a low emission syngas fuelled reverse flow combustor," Energy, Elsevier, vol. 254(PB).
    16. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
    17. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    18. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    19. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
    20. Weber, Roman & Gupta, Ashwani K. & Mochida, Susumu, 2020. "High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:193:y:2017:i:c:p:28-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.