IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014675.html
   My bibliography  Save this article

Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels

Author

Listed:
  • Hidegh, Gyöngyvér
  • Csemány, Dávid
  • Vámos, János
  • Kavas, László
  • Józsa, Viktor

Abstract

Mixture Temperature-Controlled combustion is a novel concept featuring ultra-low pollutant emission. Since the resulting distributed combustion is highly homogeneous, NOX emission can be kept below 10 ppm. The available renewable fuels worldwide vary a lot in their characteristics. Three renewable hydrocarbon fuels: coconut oil, palm oil, and waste cooking oil-rapeseed oil methyl esters were tested along with three conventional fuels: standard jet fuel (JP-8), standard diesel oil, and natural gas. The ultimate goal of the present study was the comparison of the flame structures, chemiluminescent, and pollutant emissions of various fuels, exploiting distributed combustion offered by the novel burner concept. As mixture preparation is highly sensitive to fuel vaporization, distillation curves of the five investigated liquid fuels were measured and evaluated. Density, surface tension, and viscosity were also measured to compare the estimated atomization characteristics. The tests were uniformly performed at 13.3 kW thermal power and an equivalence ratio of 0.8, varying atomizing pressure and air preheating temperature. It was found that jet fuel, diesel fuel, and coconut biodiesel bear the highest potential for distributed combustion in gas turbines, while incorrect burner setup may lead to unacceptably high emissions.

Suggested Citation

  • Hidegh, Gyöngyvér & Csemány, Dávid & Vámos, János & Kavas, László & Józsa, Viktor, 2021. "Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014675
    DOI: 10.1016/j.energy.2021.121219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    2. Karyeyen, Serhat & Feser, Joseph S. & Jahoda, Edward & Gupta, Ashwani K., 2020. "Development of distributed combustion index from a swirl-assisted burner," Applied Energy, Elsevier, vol. 268(C).
    3. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
    4. Chong, Cheng Tung & Chiong, Meng-Choung & Ng, Jo-Han & Lim, Mooktzeng & Tran, Manh-Vu & Valera-Medina, Agustin & Chong, William Woei Fong, 2019. "Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions," Energy, Elsevier, vol. 178(C), pages 804-813.
    5. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    7. Johari, Anwar & Nyakuma, Bemgba Bevan & Mohd Nor, Shadiah Husna & Mat, Ramli & Hashim, Haslenda & Ahmad, Arshad & Yamani Zakaria, Zaki & Tuan Abdullah, Tuan Amran, 2015. "The challenges and prospects of palm oil based biodiesel in Malaysia," Energy, Elsevier, vol. 81(C), pages 255-261.
    8. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Lindstad, Elizabeth & Rehn, Carl Fredrik & Eskeland, Gunnar S., 2017. "Sulphur Abatement Globally in Maritime Shipping," Discussion Papers 2017/8, Norwegian School of Economics, Department of Business and Management Science.
    10. Katharina D. Six & Silvia Kloster & Tatiana Ilyina & Stephen D. Archer & Kai Zhang & Ernst Maier-Reimer, 2013. "Global warming amplified by reduced sulphur fluxes as a result of ocean acidification," Nature Climate Change, Nature, vol. 3(11), pages 975-978, November.
    11. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    12. Müller-Casseres, Eduardo & Carvalho, Francielle & Nogueira, Tainan & Fonte, Clarissa & Império, Mariana & Poggio, Matheus & Wei, Huang Ken & Portugal-Pereira, Joana & Rochedo, Pedro R.R. & Szklo, Alex, 2021. "Production of alternative marine fuels in Brazil: An integrated assessment perspective," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    2. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    3. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    4. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    6. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    7. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    8. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    9. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    10. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    12. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    13. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    14. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    15. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    16. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    19. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    20. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.