IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp69-78.html
   My bibliography  Save this article

Low calorific value fuelled distributed combustion with swirl for gas turbine applications

Author

Listed:
  • Khalil, Ahmed E.E.
  • Arghode, Vaibhav K.
  • Gupta, Ashwani K.
  • Lee, Sang Chun

Abstract

Distributed combustion offers significant performance improvement with near zero emissions for industrial gas turbine applications. Our efforts to further develop zero emission distributed combustion are explored here by utilizing swirl to the flow. The beneficial aspects of distributed swirl combustion using a cylindrical geometry combustor has shown low emissions of NO and CO, and significantly improved pattern factor using methane as the fuel at high thermal intensity. Biofuels, syngas and landfill gases offer superior use in gas turbine combustion. However, they are characterized by their low calorific value. Results are presented here from the distributed swirl combustor with simulated low calorific value fuels with defined mixture of methane diluted with nitrogen. The calorific value of the fuel obtained provided comparable adiabatic flame temperature and flame speed to those characteristic of low to medium calorific value syngas fuels. The results are compared with the methane fueled combustor. Experimental results from the distributed swirl combustor using methane fuel at an equivalence ratio of 0.6 and a heat release intensity of 27MW/m3-atm showed low levels of NO (∼9PPM) and low CO (∼21PPM) under non-premixed conditions. Novel Premixed Combustion design demonstrated 4PPM of NO and 11PPM of CO. In contrast methane diluted with nitrogen resulted in a dramatic decrease of NO emissions (30–50%), to provide NO emission of 7PPM (for non-premixed case) and 2.8PPM (premixed case), at the same conditions, with minimal impact on CO for all the conditions examined here. The combustor provided no instability or flame flashback at higher fuel flow rates (to maintain the same thermal load as with methane fuel). Results obtained with different calorific value fuels on the emissions of NO and CO, lean stability limit and OH* chemiluminescence are presented. The results showed favorable operation of the distributed swirl combustor for applications with both high and low calorific value fuels, such as, methane, synfuel and landfill gases to power the gas turbines without any combustor modifications.

Suggested Citation

  • Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:69-78
    DOI: 10.1016/j.apenergy.2012.02.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Development of high intensity CDC combustor for gas turbine engines," Applied Energy, Elsevier, vol. 88(3), pages 963-973, March.
    2. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    3. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Investigation of forward flow distributed combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(1), pages 29-40, January.
    4. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    5. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Swirling distributed combustion for clean energy conversion in gas turbine applications," Applied Energy, Elsevier, vol. 88(11), pages 3685-3693.
    6. Al-attab, K.A. & Zainal, Z.A., 2011. "Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion," Applied Energy, Elsevier, vol. 88(4), pages 1084-1095, April.
    7. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Investigation of reverse flow distributed combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(4), pages 1096-1104, April.
    8. Tsai, W.T., 2007. "Bioenergy from landfill gas (LFG) in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 331-344, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    2. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
    4. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    5. Yang, Yang & Liu, Fangsheng & Han, Xu & Wang, Xinxin & Dong, Dehua & Chen, Yan & Feng, Peizhong & Khan, Majid & Wang, Shaorong & Ling, Yihan, 2022. "Highly efficient and stable fuel-catalyzed dendritic microchannels for dilute ethanol fueled solid oxide fuel cells," Applied Energy, Elsevier, vol. 307(C).
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Toward ultra-low emission distributed combustion with fuel air dilution," Applied Energy, Elsevier, vol. 148(C), pages 187-195.
    7. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    8. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    9. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields," Applied Energy, Elsevier, vol. 121(C), pages 132-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    2. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    3. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    4. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    5. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    7. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    8. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    9. Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
    10. Zeinivand, Hamed & Bazdidi-Tehrani, Farzad, 2012. "Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor," Applied Energy, Elsevier, vol. 92(C), pages 348-360.
    11. Gupta, Shreshtha Kumar & Kushwaha, Abhijit Kumar & Arghode, Vaibhav Kumar, 2020. "Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines," Energy, Elsevier, vol. 193(C).
    12. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
    14. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    15. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    16. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    17. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    18. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    19. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
    20. Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:69-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.