Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.04.085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cho, E.-S. & Danon, B. & de Jong, W. & Roekaerts, D.J.E.M., 2011. "Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace," Applied Energy, Elsevier, vol. 88(12), pages 4952-4959.
- Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
- Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
- Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
- Li, Zhiyi & Cuoci, Alberto & Sadiki, Amsini & Parente, Alessandro, 2017. "Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry," Energy, Elsevier, vol. 139(C), pages 555-570.
- Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
- Adamczyk, Wojciech P. & Bialecki, Ryszard A. & Ditaranto, Mario & Gladysz, Pawel & Haugen, Nils Erland L. & Katelbach-Wozniak, Anna & Klimanek, Adam & Sladek, Slawomir & Szlek, Andrzej & Wecel, Gabrie, 2017. "CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler," Energy, Elsevier, vol. 140(P1), pages 1305-1315.
- Cho, E.-S. & Shin, D. & Lu, J. & de Jong, W. & Roekaerts, D.J.E.M., 2013. "Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions," Applied Energy, Elsevier, vol. 107(C), pages 25-32.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ali Shamooni & Alberto Cuoci & Tiziano Faravelli & Amsini Sadiki, 2018. "Prediction of Combustion and Heat Release Rates in Non-Premixed Syngas Jet Flames Using Finite-Rate Scale Similarity Based Combustion Models," Energies, MDPI, vol. 11(9), pages 1-20, September.
- Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
- Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
- Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
- Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
- Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
- Pramanik, Santanu & Ravikrishna, R.V., 2022. "Non premixed operation strategies for a low emission syngas fuelled reverse flow combustor," Energy, Elsevier, vol. 254(PB).
- Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
- Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
- Jonghyun Kim & Jungsoo Park, 2020. "Conceptual Approach to Combustor Nozzle and Reformer Characteristics for Micro-Gas Turbine with an On-Board Reforming System: A Novel Thermal and Low Emission Cycle," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
- Sharma, Saurabh & Chowdhury, Arindrajit & Kumar, Sudarshan, 2020. "A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor," Energy, Elsevier, vol. 194(C).
- Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
- Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
- Yepes, Hernando A. & Obando, Julián E. & Amell, Andrés A., 2022. "The effect of syngas addition on flameless natural gas combustion in a regenerative furnace," Energy, Elsevier, vol. 252(C).
- Fordoei, E. Ebrahimi & Mazaheri, Kiumars & Mohammadpour, Amirreza, 2021. "Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion," Energy, Elsevier, vol. 218(C).
- Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
- Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
- Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
- Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
- Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
More about this item
Keywords
Characteristic time scales; Chemical time scale; Finite-rate chemistry; MILD combustion; Mixing time scale; Partially-Stirred Reactor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:637-655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.