Humidified exhaust recirculation for efficient combined cycle gas turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.03.079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Park, Min Young & Shin, Serin & Kim, Eung Soo, 2015. "Effective energy management by combining gas turbine cycles and forward osmosis desalination process," Applied Energy, Elsevier, vol. 154(C), pages 51-61.
- Zadpoor, Amir Abbas & Golshan, Ali Hamedani, 2006. "Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system," Energy, Elsevier, vol. 31(14), pages 2652-2664.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
- Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
- Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
- Tanaka, Yasuto & Mesfun, Sennai & Umeki, Kentaro & Toffolo, Andrea & Tamaura, Yutaka & Yoshikawa, Kunio, 2015. "Thermodynamic performance of a hybrid power generation system using biomass gasification and concentrated solar thermal processes," Applied Energy, Elsevier, vol. 160(C), pages 664-672.
- Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
- Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
- Hou, Hongjuan & Wu, Junjie & Yang, Yongping & Hu, Eric & Chen, Si, 2015. "Performance of a solar aided power plant in fuel saving mode," Applied Energy, Elsevier, vol. 160(C), pages 873-881.
- Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
- Selwynraj, A. Immanuel & Iniyan, S. & Polonsky, Guy & Suganthi, L. & Kribus, Abraham, 2015. "Exergy analysis and annual exergetic performance evaluation of solar hybrid STIG (steam injected gas turbine) cycle for Indian conditions," Energy, Elsevier, vol. 80(C), pages 414-427.
- Ersayin, Erdem & Ozgener, Leyla, 2015. "Performance analysis of combined cycle power plants: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 832-842.
- Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
- Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
- Guteša Božo, M. & Vigueras-Zuniga, MO. & Buffi, M. & Seljak, T. & Valera-Medina, A., 2019. "Fuel rich ammonia-hydrogen injection for humidified gas turbines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
- Nematollahi, Mehran & Porkhial, Soheil & Hassanabad, Madjid Ghodsi, 2022. "Using two novel integrated systems to cool the air toward the ISO condition at the gas turbine inlet," Energy, Elsevier, vol. 243(C).
- Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
- Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
- Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
- Yang, Yongping & Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Wang, Ziyu & Yu, Guangying, 2019. "Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating," Energy, Elsevier, vol. 178(C), pages 386-399.
- Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
- Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
- Maheshwari, Mayank & Singh, Onkar, 2019. "Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine," Energy, Elsevier, vol. 168(C), pages 1217-1236.
- Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
- Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: Comparative analyses," Energy, Elsevier, vol. 119(C), pages 1230-1246.
- Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
- Behnam Roshanzadeh & Ashkan Asadi & Gowtham Mohan, 2023. "Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants," Energies, MDPI, vol. 16(14), pages 1-23, July.
- Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
Gas turbine overall efficiency; Gas turbine humidification; Gas turbine exhaust recirculation; NOx control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:356-366. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.