IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v189y2017icp492-505.html
   My bibliography  Save this article

Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load

Author

Listed:
  • Yousefi, Amin
  • Birouk, Madjid

Abstract

Energy fraction of the main (premixed) fuel and pilot injection timing are important in dual-fuel pilot diesel ignition engine. In the present study, natural gas, which is the main premixed fuel, is induced into the engine through the intake port, while the pilot diesel fuel (for ignition) is indirectly injected into the engine. A computational fluid dynamic (CFD)-chemistry platform based on AVL FIRE-CHEMKIN is used to simulate the combustion and emissions characteristics of a dual-fuel pilot diesel ignition engine operating on premixed natural gas. The effect of natural gas energy fraction and diesel injection timing at constant engine total fuel energy on combustion performance and emissions is investigated at low engine load (25% load and IMEP=3bar). The results revealed that at injection timings of 12 and 20 °BTDC, the maximum ITE (26.7%) occurs at 50% natural gas energy fraction. This is attributed to the improved cylinder charge conditions as a result of high swirling motion produced by the introduction of pre-combustion chamber. Moreover, a drastic reduction of NOx emissions was observed at 60% natural gas energy fraction in comparison with that of only diesel combustion (i.e., 0% natural gas energy fraction). On the other side, the combustion of fuel starts in the pre-combustion chamber and propagates into the main chamber. As a result, the combustion peak temperature drops which significantly reduces NOx formation. The results revealed that unburned methane emissions under dual-fuel operation mode become much higher compared to that under diesel combustion mode, which implies that a considerable amount of gaseous fuel escapes the combustion process at low load. However, using pre-combustion chamber is found to decrease unburned methane emissions by 46% on average compared to dual-fuel engine without pre-combustion chamber.

Suggested Citation

  • Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
  • Handle: RePEc:eee:appene:v:189:y:2017:i:c:p:492-505
    DOI: 10.1016/j.apenergy.2016.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916318098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papagiannakis, R.G. & Kotsiopoulos, P.N. & Zannis, T.C. & Yfantis, E.A. & Hountalas, D.T. & Rakopoulos, C.D., 2010. "Theoretical study of the effects of engine parameters on performance and emissions of a pilot ignited natural gas diesel engine," Energy, Elsevier, vol. 35(2), pages 1129-1138.
    2. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    3. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    4. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    5. Zhao, Yuwei & Wang, Ying & Li, Dongchang & Lei, Xiong & Liu, Shenghua, 2014. "Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 72(C), pages 608-617.
    6. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    7. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    8. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    9. Shen, Zhaojie & Liu, Zhongchang & Tian, Jing & Liu, Jiangwei, 2014. "Investigation of in-cylinder gas stratification of diesel engine during intake and compression stroke," Energy, Elsevier, vol. 72(C), pages 671-679.
    10. Imran, S. & Emberson, D.R. & Diez, A. & Wen, D.S. & Crookes, R.J. & Korakianitis, T., 2014. "Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels," Applied Energy, Elsevier, vol. 124(C), pages 354-365.
    11. Zhang, Qiang & Li, Menghan & Shao, Sidong, 2015. "Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel," Applied Energy, Elsevier, vol. 157(C), pages 217-228.
    12. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    13. Zhou, J.H. & Cheung, C.S. & Leung, C.W., 2014. "Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition," Applied Energy, Elsevier, vol. 126(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    2. Zhongchao Zhao & Kai Zhao & Dandan Jia & Pengpeng Jiang & Rendong Shen, 2017. "Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger," Energies, MDPI, vol. 10(11), pages 1-18, November.
    3. Ji, Shaobo & Li, Yang & Tian, Guohong & Shu, Minglei & Jia, Guorui & He, Shaoqing & Lan, Xin & Cheng, Yong, 2021. "Investigation of laminar combustion characteristics of ozonized methane-air mixture in a constant volume combustion bomb," Energy, Elsevier, vol. 226(C).
    4. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    5. Abhinandhan Narayanan & Deivanayagam Hariharan & Kendyl Ryan Partridge & Austin Leo Pearson & Kalyan Kumar Srinivasan & Sundar Rajan Krishnan, 2023. "Impact of Low Reactivity Fuel Type and Energy Substitution on Dual Fuel Combustion at Different Injection Timings," Energies, MDPI, vol. 16(4), pages 1-36, February.
    6. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    7. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    8. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    9. Tavakoli, Sadi & Saettone, Simone & Steen, Sverre & Andersen, Poul & Schramm, Jesper & Pedersen, Eilif, 2020. "Modeling and analysis of performance and emissions of marine lean-burn natural gas engine propulsion in waves," Applied Energy, Elsevier, vol. 279(C).
    10. Hoang, Anh Tuan & Murugesan, Parthasarathy & PV, Elumalai & Balasubramanian, Dhinesh & Parida, Satyajeet & Priya Jayabal, Chandra & Nachippan, Murugu & Kalam, M.A & Truong, Thanh Hai & Cao, Dao Nam & , 2023. "Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model," Energy, Elsevier, vol. 280(C).
    11. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    12. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    13. Rafał Ślefarski & Michał Gołębiewski & Paweł Czyżewski & Przemysław Grzymisławski & Jacek Wawrzyniak, 2018. "Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System," Energies, MDPI, vol. 11(2), pages 1-15, February.
    14. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    15. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    16. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    17. Zhang, Wei & Chen, Zhaohui & Duan, Qiwang & Jiang, Qianyu, 2021. "Visual test and evolutionary analysis of flow fields in cylinder of helical intake port diesel engine," Energy, Elsevier, vol. 223(C).
    18. Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
    19. Min Zhang & Wanhua Su & Zhi Jia, 2024. "Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at Low Loads with Concentration and Temperature Stratified Combustion," Energies, MDPI, vol. 17(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    3. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    4. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    5. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    7. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    8. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    9. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    10. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    11. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    12. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    13. Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
    14. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    15. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    16. Li, Yu & Li, Hailin & Guo, Hongsheng & Li, Yongzhi & Yao, Mingfa, 2017. "A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model," Applied Energy, Elsevier, vol. 205(C), pages 153-162.
    17. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    18. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    19. Yu-Hui Peng & Yu-Peng Huang & Jia-You Tang & Qi-Feng Huang & Yi-Ran Huang, 2018. "Experimental Study on the Effects of Air Supply Control on Combustion and Emissions Performance at Medium and Low Load for a Dual-Fuel Diesel Engine," Energies, MDPI, vol. 11(11), pages 1-14, October.
    20. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:189:y:2017:i:c:p:492-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.