IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8951-d985254.html
   My bibliography  Save this article

Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach

Author

Listed:
  • Hammam Aljabri

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Mickael Silva

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Moez Ben Houidi

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Xinlei Liu

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Moaz Allehaibi

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
    Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Mecca 24382, Saudi Arabia)

  • Fahad Almatrafi

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Abdullah S. AlRamadan

    (Transport Technologies Division, R&DC, Saudi Aramco, Dhahran 34466, Saudi Arabia)

  • Balaji Mohan

    (Transport Technologies Division, R&DC, Saudi Aramco, Dhahran 34466, Saudi Arabia)

  • Emre Cenker

    (Transport Technologies Division, R&DC, Saudi Aramco, Dhahran 34466, Saudi Arabia)

  • Hong G. Im

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

Abstract

Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H 2 in internal combustion engines (ICEs) faces three major challenges: high NO x emissions, severe pressure rise rates, and pre-ignition at mid to high loads. In this study, the potential of H 2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration, the effects of three primary parameters on the engine combustion performance and NO x emissions were evaluated, including the compression ratio (CR), the air–fuel ratio, and the spark timing. In the simulations, the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency, growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ, and due to practical limitations of the boosting system, λ at 4.0 was set as the limit. At a fixed spark timing, using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions, the exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NO x level. Finally, the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC, the results indicated that even though the mixture is lean, the flame speed of H 2 is sufficiently high to burn the lean charge without using a PC. In addition, the PC design used in the current work induced a high MPRR inside the PC and MC, leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC, leading to lower thermal efficiency compared to the SI mode. Consequently, the PC combustion mode needs further optimizations to be employed in hydrogen engine applications.

Suggested Citation

  • Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8951-:d:985254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
    2. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    3. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    4. Sahoo, Sridhar & Srivastava, Dhananjay Kumar, 2021. "Effect of compression ratio on engine knock, performance, combustion and emission characteristics of a bi-fuel CNG engine," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Yontar, Ahmet Alper, 2020. "A comparative study to evaluate the effects of pre-chamber jet ignition for engine characteristics and emission formations at high speed," Energy, Elsevier, vol. 210(C).
    3. Lina Xu & Gang Li & Mingfa Yao & Zunqing Zheng & Hu Wang, 2022. "Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas," Energies, MDPI, vol. 15(15), pages 1-16, July.
    4. Ireneusz Pielecha & Filip Szwajca, 2023. "Two- and Three-Stage Natural Gas Combustion System—Experimental Comparative Analysis," Energies, MDPI, vol. 16(9), pages 1-15, April.
    5. Soo-Jin Jeong, 2024. "CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review," Energies, MDPI, vol. 17(18), pages 1-39, September.
    6. Hosseini, M. & Chitsaz, I., 2023. "Knock probability determination employing convolutional neural network and IGTD algorithm," Energy, Elsevier, vol. 284(C).
    7. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    8. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    9. Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
    10. Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
    11. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    12. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    13. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    14. Zhongchao Zhao & Kai Zhao & Dandan Jia & Pengpeng Jiang & Rendong Shen, 2017. "Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger," Energies, MDPI, vol. 10(11), pages 1-18, November.
    15. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    16. He, Bang-Quan & Xu, Si-Peng & Fu, Xue-Qing & Zhao, Hua, 2020. "Combustion and emission characteristics of an ultra-lean burn gasoline engine with dimethyl ether auto-ignition," Energy, Elsevier, vol. 209(C).
    17. Hoang, Anh Tuan & Murugesan, Parthasarathy & PV, Elumalai & Balasubramanian, Dhinesh & Parida, Satyajeet & Priya Jayabal, Chandra & Nachippan, Murugu & Kalam, M.A & Truong, Thanh Hai & Cao, Dao Nam & , 2023. "Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model," Energy, Elsevier, vol. 280(C).
    18. Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
    19. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    20. Rafał Ślefarski & Michał Gołębiewski & Paweł Czyżewski & Przemysław Grzymisławski & Jacek Wawrzyniak, 2018. "Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System," Energies, MDPI, vol. 11(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8951-:d:985254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.